Mosmetroproekt.ru

МосМетроПроект
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как рассчитать количество радиаторов отопления правильно, формула расчета

Как рассчитать количество радиаторов отопления правильно, формула расчета

Чтобы обеспечить качественный обогрев в собственной квартире или загородном доме до начала отопительного сезона следует произвести ремонт отопительной системы и при необходимости поменять батареи, предварительно ознакомившись, как рассчитать количество радиаторов отопления. Предложений соответствующего оборудования на отечественном рынке достаточно много. Потребители могут приобрести приборы разной мощности и исполнения. Чтобы сделать правильный выбор, нужно ознакомиться с информацией относительно особенностей каждого типа отопительных батарей и произвести расчет количества радиаторов отопления.

Особенности типов радиаторов

Радиатор (батарея) является отопительным прибором, состоящим из секций, которые соединены трубами. По ним циркулирует жидкий теплоноситель, обычно представляющий собой воду, нагретую до нужной температуры. В большинстве случаев батареи обогревают жилые комнаты и подсобные помещения.

Владельцы недвижимости могут выбрать из нескольких типов радиаторов, а вот какой из них самый лучший определить непросто, поскольку требования к ним отличаются в зависимости от конкретных потребностей и особенностей отопительной конструкции. Преимущества и недостатки отопительных приборов во многом зависят от материала их изготовления.

Чугунные батареи. Современные модели радиаторов, изготовленных из чугуна, компактны и обладают высокой мощностью, а соответственно теплоотдачей.

Кроме этого им присущи и другие достоинства:

  • несмотря на то, что их большой вес создает неудобства при транспортировке, значительная масса обеспечивает приборам большую теплоемкость и инерционность;
  • при наличии в доме в системе отопления перепадов температуры теплоносителя, чугунные изделия гораздо лучше поддерживают обогрев;
  • чугун как материал изготовления отопительных приборов слабо реагирует на перегрев воды и ее низкое качество;
  • долговечность, которая превосходит данный показатель у всех известных типов радиаторов, в домах советской постройки их можно до сих пор встретить.

Существенные недостатки батарей из чугуна следующие:

  • большой вес изделий создает ряд неудобств при их обслуживании и монтаже. Для установки требуются надежные крепления;
  • чугун периодически требует покраски;
  • по причине того, что внутренние поверхности секций не отличаются гладкостью, на них со временем оседает налет, что приводит к снижению степени теплоотдачи;
  • для нагрева чугуна необходимо, чтобы теплоноситель был более горячим;
  • прокладки между секциями приходят в негодность. Правда, этот недостаток проявляется через 40 лет эксплуатации.

Алюминиевые батареи. По мнению специалистов, радиаторы из алюминия считаются наиболее удачным выбором, поскольку отличаются высокой теплопроводностью и большой площадью поверхности прибора за счет оребрения.

Среди преимуществ алюминиевых батарей значатся:

  • несложный монтаж;
  • малый вес;
  • небольшие габариты;
  • высокое рабочее давление;
  • превосходная степень теплоотдачи.

Из недостатков алюминиевых приборов нужно отметить:

  • чувствительность к засорению;
  • высокую вероятность коррозийных процессов, особенно под воздействием малых блуждающих токов, оказываемых на радиатор, что может закончиться его разрывом.

С целью исключения рисков, при изготовлении алюминиевых батарей их внутреннюю поверхность покрывают особым полимерным слоем, предохраняющим металл от контакта с водой. При отсутствии в радиаторе внутреннего слоя не следует перекрывать краны, если в трубах имеется вода, чтобы не произошел разрыв прибора.

Биметаллические радиаторы. Считаются хорошим выбором. Эти приборы, изображенные на фото, состоят из сплава двух металлов – стали и алюминия. Модели биметаллических радиаторов обладают достоинствами алюминиевых изделий, а все их недостатки и опасность разрыва отсутствуют. Но такие приборы имеют высокую стоимость.

Стальные батареи. На рынке имеется огромный выбор таких радиаторов, что позволяет потребителям приобрести прибор какой необходимо мощности. Читайте также: «Как сделать расчет стальных радиаторов отопления – учитываем все нюансы».

Стальные батареи обладают такими недостатками:

  • допустимое рабочее давление не превышает 7 атмосфер;
  • температура теплоносителя не может быть более 100°С;
  • низкая степень тепловой инерционности;
  • возможна коррозия металла;
  • чувствительность к гидравлическим ударам и возможным перепадам рабочей температуры.

Стальные батареи отличаются значительной площадью подогреваемой поверхности, что способствует движению нагреваемого воздуха. Обычно данный тип отопительных приборов относят к конвекторам. Специалисты рекомендуют: прежде, чем остановить выбор на стальных радиаторах, обратить внимание на алюминиевые, биметаллические, конструкции или продукцию из чугуна. Читайте также: «Ремонт чугунных радиаторов отопления».

Масляные радиаторы. Эти приборы не зависят от функционирования центральной отопительной системы и обычно их приобретают с целью дополнительного обогрева помещений. Максимальная отопительная мощность достигается при использовании масляного радиатора минут через 30 после нагрева. Актуальны такие отопительные приборы для загородных и дачных домов.

Особенности выбора радиатора

В основе выбора отопительного прибора – предполагаемые условия эксплуатации и их срок службы. Не имеет смысла приобретать дешевые алюминиевые изделия, не имеющие полимерного покрытия, так как они подвержены коррозийным процессам.

Нередко специалисты считают предпочтительным вариантом выбора радиатора проверенные временем чугунные батареи. Как показывает практика, часто продавцы навязывают покупателям алюминиевые изделия, утверждая при этом, что батареи из чугуна сильно устарели.

Но при сравнении отзывов потребителей можно отметить, что владельцы недвижимости по-прежнему отдают предпочтение именно чугунным приборам, считая их более разумным вложением денег. Только прежде для достижения эффективности работы системы теплоснабжения следует выполнить расчет отопительных радиаторов.

На современном рынке имеется широкий ассортимент компактных по размеру чугунных батарей. Стартует цена одной секции от $7. Цена дизайнерских изделий для обогрева помещений будет гораздо выше.

Данные для расчета количества радиаторов отопления

Таким образом, знания как правильно рассчитать радиаторы отопления, поможет добиться эффективного функционирования отопительной конструкции. При этом задействуют следующие коэффициенты.

К1. Степень остекления:

  • стеклопакет стандартный – 1,3;
  • двойной энергосберегающий стеклопакет – 1,0;
  • энергосберегающий тройной стеклопакет – 0,85.

К2. Наличие теплоизоляции:

  • стандартная бетонная панель — 1,3;
  • стена в два кирпича — 1,0;
  • бетонная плита с 10-сантиметровым слоем пенополистирола – 0,85.

К3. Зависимость от площади окон:

  • при 10% — 0,8;
  • при 20% — 0,9;
  • если 30% — 1,0;
  • если 40% — 1,1 и так далее.

К4. Минимальная наружная температура:

  • минус 25°С — 1,3;
  • минус 20°С — 1,1;
  • минус 15°С — 0,9;
  • минус 10°С — 0,7.

К5. Высота помещения:

  • 4 метра — 1,15;
  • 3,5 метра — 1,1;
  • 3 метра — 1,05;
  • 2,5 метра – 1,0.

К6. Отапливаемое помещение – 0,8.

К7. Количество стен:

  • отдельное строение с четырьмя стенами — 1,4;
  • три стенки — 1,3;
  • угловая квартира, имеющая две наружные стены -1,2;
  • одна наружная стена в комнате — 1,1.

Формула расчета радиаторов отопления, а точнее их требуемой общей мощности, выглядит следующим образом: показатель теплоотдачи умножают на площадь комнаты и на коэффициенты: 100 Вт/м²хS хК1хК2хК3хК4хК5хК6хК7.

Методик, как рассчитать радиаторы отопления, существует несколько, но выбрать желательно наиболее удобный вариант (подробнее: «Расчет мощности батарей отопления — как рассчитать самому»).

Как рассчитать количество радиаторов отопления и мощность

На практике применяется несколько способов, как рассчитать количество радиаторов отопления и их мощность. В их основе находится принцип определения средней мощности секции с учетом 20% резерва. Читайте также: «Как рассчитать количество секций радиатора отопления самостоятельно».

Первый метод. Является стандартным и позволяет выполнить расчет радиаторов отопления по площади (прочитайте: «Расчет отопления по площади — определяем мощность отопительных приборов»). Так, согласно действующим строительным нормативам, чтобы обогреть один «квадрат» помещения требуется 100 ватт тепловой мощности. Например, площадь комнаты составляет 24 «квадрата», а мощность одной секции равна 160 ватт, тогда: 24х100:160 = 15. Результат показывает, что для обогрева помещения необходимо приобрести 15 секций мощностью 160 ватт каждая.

Второй метод. В данном случае главными критериями варианта радиаторы отопления как рассчитать — площадь помещения и его высота. Если в данном случае одна секция способна обогреть 1,8 м² площади при высоте потолков 2,5 метра, тогда 24:1,8 = 13,3. При округлении результата в большую сторону получится 14 секций отопительного прибора.
Этот способ имеет большую погрешность и не всегда им можно пользоваться (прочитайте также: «Как рассчитать отопление в доме правильно»).

Третий метод. В его основе находится подсчет объема помещения. К примеру, длина комнаты составляет 6 метров, ширина – 4 метра, высота – 2,5 метра. Тогда объем будет равен 6х4х2,5 = 60 м³. Если для обогрева 5 м³ требуется секция мощностью 200 ватт, необходимо приобрести 60:5 = 12 (секций) по 200 ватт или 11 секций по 160 ватт.

Вышеописанные методы позволяют узнать результат, но с погрешностью. По этой причине следует установить батарею с одной лишней секцией. До того, как рассчитать радиатор отопления окончательно, нужно помнить, что согласно строительным нормам предполагается обогрев помещения до минимальной температуры.

Расчет необходимой мощности радиаторов

Требуемую мощность вычисляют следующим образом:

  1. Определяют объем помещения: 6х4х2,5 = 60 м³.
  2. В соответствии с климатическим коэффициентом (для центральных российских регионов его значение равно 41 Вт/ м³): 60х41 = 2460 ватт.
  3. При условии, что зимы холодные и температура опускается до 20 градусов мороза, желательно учитывать 20% запас мощности. В итоге требуемая мощность равна 2952 ватта. Оборудование именно такой тепловой мощности и следует приобретать.

Существует еще один способ, как рассчитать количество радиаторов отопления правильно, основанный на площади помещения и поправочных коэффициентах. В качестве примера взята одна комната площадью 24 «квадрата» и одной стеной, контактирующей с улицей. Порядок выполнения расчета батарей отопления такой:

Сначала: 24х100х1.1 = 2640 ватт, где цифра 100 означает нормативную мощность. В том случае, когда мощность секции 160 ватт. Тогда получают 16,5 или 17 секций по 160 ватт каждая (подробнее: «Как рассчитать мощность радиатора отопления — делаем расчет мощности правильно»).

Перед тем, как приобрести радиатор отопления, необходимо внимательно изучить технический паспорт, прилагаемый к изделию, чтобы знать минимальную величину теплоотдачи.

Обычно вычислять площадь радиатора нет необходимости, поскольку определяют тепловое сопротивление или требуемую мощность, а потом конкретную модель выбирают из имеющегося в торговой сети ассортимента. Если имеется потребность в точных расчетах, то разумнее всего будет обратиться за помощью к специалистам (прочитайте также: «Как рассчитать батареи отопления — количество и размер»).

О расчете мощности радиаторов отопления на видео:

Расчет батарей отопления на площадь – калькулятор

Расчет радиаторов отопления по площади на квадратный метр с помощью калькулятора – узнайте как рассчитать количество секций батарей отопления.

С помощью данного калькулятора вы можете произвести расчет радиаторов отопления и узнать количество секций для комфортного обогрева указанной площади. Для выполнения подсчета, введите кубатуру комнаты, теплоотдачу одной секции радиатора по паспорту (или см. таблицу ниже), укажите вид подключения и норму обогрева на 1 м 3 помещения (приблизительно для кирпичных домов – 37 Вт/м 3 , для панельных – 41 Вт/м 3 ). При расчете через тепловые потери помещения – необходимо заранее воспользоваться калькулятором теплопотерь. Запас мощности рекомендуется оставлять в районе 10-15%, поскольку в СНиП нет подробного описания методики расчета.

Смежные нормативные документы:

  • СП 50.13330.2010 «Тепловая защита зданий»
  • СП 60.13330.2012 «Отопление, вентиляция и кондиционирование воздуха»

СНиП 2.04.07-86* «Тепловые сети»

  • ГОСТ 30494-2011 «Здания жилые и общественные. Параметры микроклимата в помещениях»
  • ГОСТ 22270-76 «Оборудование для кондиционирования воздуха, вентиляции и отопления»
  • ГОСТ 31311-2005 «Приборы отопительные»
  • Формулы расчета радиаторов отопления

    Количество секций радиатора можно рассчитать двумя способами: с помощью универсального расчета по объему помещения или при известных значениях тепловых потерь.

    В первом случае, формула для подсчета количества секций выглядит так:

    • V – объем помещения, м 3 ;
    • q – норма обогрева, Вт/м 3 ;
    • z – поправка на тип подключения;
    • P2 – теплоотдача одной секции батареи, Вт.

    Чтобы определить суммарную мощность для обогрева помещения, требуется знать норму на 1 кубический метр и умножить ее на общую кубатуру. Однако значение нормы в справочных материалах не указано, и для приблизительных расчетов используется величина для кирпичных домов – 37 Вт/м 3 , для панельных – 41 Вт/м 3 . Соответственно для домов из дерева или пористых блоков, можно принять несколько меньшее значение.

    Читать еще:  Схема отопления двухэтажного дома с принудительной циркуляцией: двухконтурная, коллекторная

    Также в зависимости от типа подключения радиаторов к системе отопления принимают поправки:

    • одностороннее (нагрев снизу / возврат сверху) – 1.28;
    • одностороннее (нагрев сверху / возврат снизу) – 1.03;
    • двустороннее (нагрев-возврат снизу с одной стороны) – 1.28;
    • диагональное (нагрев снизу / возврат сверху) – 1.00;
    • диагональное (нагрев сверху / возврат снизу) – 1.25.

    Второй вариант расчета подразумевает, что мощность приборов определяется на основании тепловых потерь помещения.

    Как рассчитать количество секций радиатора

    При модернизации системы отопления кроме замены труб меняют и радиаторы. Причем сегодня они есть из разных материалов, разных форм и размеров. Что не менее важно, имеют они разную теплоотдачу: количество тепла, которые могут передать воздуху. И это обязательно учитывают, когда делают расчет секций радиаторов.

    В помещении будет тепло, если количество тепла, которое уходит, будет компенсироваться. Поэтому в расчетах за основу берут теплопотери помещений (они зависят от климатической зоны, от материала стен, утепления, площади окон и т.д.). Второй параметр — тепловая мощность одной секции. Это то количество тепла, которое она может выдать при максимальных параметрах системы (90°C на входе и 70°C на выходе). Эта характеристика обязательно указывается в паспорте, зачастую присутствует на упаковке.

    Делаем расчет количества секций радиаторов отопления своими руками, учитываем особенности помещений и системы отопления

    Один важный момент: проводя расчеты самостоятельно, учтите, что большинство производителей указывают максимальную цифру, которую они получили при идеальных условиях. Потому любое округление производите в большую сторону. В случае с низкотемпературным отоплением (температура теплоносителя на входе ниже 85°C) ищут тепловую мощность для соответствующих параметров или делают перерасчет (описан ниже).

    Расчет по площади

    Это — самая простая методика, позволяющая примерно оценить число секций, необходимое для отопления помещения. На основании многих расчетов выведены нормы по средней мощности отопления одного квадрата площади. Чтобы учесть климатические особенности региона, в СНиПе прописали две нормы:

    • для регионов средней полосы России необходимо от 60 Вт до 100 Вт;
    • для районов, находящихся выше 60°, норма отопления на один квадратный метр 150-200 Вт.

    Почему в нормах дан такой большой диапазон? Для того, чтобы можно было учесть материалы стен и степень утепления. Для домов из бетона берут максимальные значения, для кирпичных можно использовать средние. Для утепленных домов — минимальные. Еще одна важная деталь: эти нормы просчитаны для средней высоты потолка — не выше 2,7 метра.

    Как рассчитать количество секций радиатора: формула

    Зная площадь помещения, умножаете ее норму затрат тепла, наиболее подходящую для ваших условий. Получаете общие теплопотери помещения. В технических данных к выбранной модели радиатора, находите тепловую мощность одной секции. Общие теплопотери делите на мощность, получаете их количество. Несложно, но чтобы было понятнее, приведем пример.

    Пример расчета количества секций радиаторов по площади помещения

    Угловое помещение 16 м 2 , в средней полосе, в кирпичном доме. Устанавливать будут батареи с тепловой мощностью 140 Вт.

    Для кирпичного дома берем теплопотери в середине диапазона. Так как помещение угловое, лучше взять большее значение. Пусть это будет 95 Вт. Тогда получается, что для обогрева помещения требуется 16 м 2 * 95 Вт = 1520 Вт.

    Теперь считаем количество радиаторов для отопления этой комнаты: 1520 Вт / 140 Вт = 10,86 шт. Округляем, получается 11 шт. Столько секций радиаторов необходимо будет установить.

    Расчет батарей отопления на площадь прост, но далеко не идеален: высота потолков не учитывается совершенно. При нестандартной высоте используют другую методику: по объему.

    Считаем батареи по объему

    Есть в СНиПе нормы и для обогрева одного кубометра помещений. Они даны для разных типов зданий:

    • для кирпичных на 1 м 3 требуется 34 Вт тепла;
    • для панельных — 41 Вт

    Этот расчет секций радиаторов похож на предыдущий, только теперь нужна не площадь, а объем и нормы берем другие. Объем умножаем на норму, полученную цифру делим на мощность одной секции радиатора (алюминиевого, биметаллического или чугунного).

    Формула расчета количества секций по объему

    Пример расчета по объему

    Для примера рассчитаем, сколько нужно секций в комнату площадью 16 м 2 и высотой потолка 3 метра. Здание построено из кирпича. Радиаторы возьмем той же мощности: 140 Вт:

    • Находим объем. 16 м 2 * 3 м = 48 м 3
    • Считаем необходимое количество тепла (норма для кирпичных зданий 34 Вт). 48 м 3 * 34 Вт = 1632 Вт.
    • Определяем, сколько нужно секций. 1632 Вт / 140 Вт = 11,66 шт. Округляем, получаем 12 шт.

    Теперь вы знаете два способа того, как рассчитать количество радиаторов на комнату.

    Теплоотдача одной секции

    Сегодня ассортимент радиаторов большой. При внешней схожести большинства, тепловые показатели могут значительно отличаться. Они зависят от материала, из которого изготовлены, от размеров, толщины стенок, внутреннего сечения и от того, насколько хорошо продумана конструкция.

    Потому точно сказать, сколько кВт в 1 секции алюминиевого (чугунного биметаллического) радиатора, можно сказать только применительно к каждой модели. Эти данные указывает производитель. Ведь есть значительная разница в размерах: одни из них высокие и узкие, другие — низкие и глубокие. Мощность секции одной высоты того же производителя, но разных моделей, могут отличаться на 15-25 Вт (смотрите в таблице ниже STYLE 500 и STYLE PLUS 500) . Еще более ощутимые отличия могут быть у разных производителей.

    Тем не менее, для предварительной оценки того, сколько секций батарей нужно для отопления помещений, вывели средние значения тепловой мощности по каждому типу радиаторов. Их можно использовать при приблизительных расчетах (приведены данные для батарей с межосевым расстоянием 50 см):

    • Биметаллический — одна секция выделяет 185 Вт (0,185 кВт).
    • Алюминиевый — 190 Вт (0,19 кВт).
    • Чугунные — 120 Вт (0,120 кВт).

    Точнее сколько кВт в одной секции радиатора биметаллического, алюминиевого или чугунного вы сможете, когда выберете модель и определитесь с габаритами. Очень большой может быть разница в чугунных батареях. Они есть с тонкими или толстыми стенками, из-за чего существенно изменяется их тепловая мощность. Выше приведены средние значения для батарей привычной формы (гармошка) и близких к ней. У радиаторов в стиле «ретро» тепловая мощность ниже в разы.

    Это технические характеристики чугунных радиаторов турецкой фирмы Demir Dokum. Разница более чем солидная. Она может быть еще больше

    Исходя из этих значений и средних норм в СНиПе вывели среднее количество секций радиатора на 1 м 2 :

    • биметаллическая секция обогреет 1,8 м 2 ;
    • алюминиевая — 1,9-2,0 м 2 ;
    • чугунная — 1,4-1,5 м 2 ;

    Как рассчитать количество секций радиатора по этим данным? Все еще проще. Если вы знаете площадь комнаты, делите ее на коэффициент. Например, комната 16 м 2 , для ее отопления примерно понадобится:

    • биметаллических 16 м 2 / 1,8 м 2 = 8,88 шт, округляем — 9 шт.
    • алюминиевых 16 м 2 / 2 м 2 = 8 шт.
    • чугунных 16 м 2 / 1,4 м 2 = 11,4 шт, округляем — 12 шт.

    Эти расчеты только примерные. По ним вы сможете примерно оценить затраты на приобретение отопительных приборов. Точно рассчитать количество радиаторов на комнату вы сможете выбрав модель, а потом еще пересчитав количество в зависимости от того, какая температура теплоносителя в вашей системе.

    Расчет секций радиаторов в зависимости от реальных условий

    Еще раз обращаем ваше внимание на то, что тепловая мощность одной секции батареи указывается для идеальных условий. Столько тепла выдаст батарея, если на входе ее теплоноситель имеет температуру +90°C, на выходе +70°C, в помещении при этом поддерживается +20°C. То есть, температурный напор системы (называют еще «дельта системы») будет 70°C. Что делать, если в вашей системе выше +70°C на входе на бывает? или необходима температура в помещении +23°C? Пересчитывать заявленную мощность.

    Для этого необходимо рассчитать температурный напор вашей системы отопления. Например, на подаче у вас +70°C, на выходе +60°C, а в помещении вам необходима температура +23°C. Находим дельту вашей системы: это среднее арифметическое температур на входе и выходе, за минусом температуры в помещении.

    Формула расчета температурного напора системы отопления

    Для нашего случая получается: (70°C+ 60°C)/2 — 23°C = 42°C. Дельта для таких условий 42°C. Далее находим это значение в таблице пересчета (расположена ниже) и заявленную мощность умножаем на этот коэффициент. Поучаем мощность, которую сможет выдать эта секция для ваших условий.

    Таблица коэффициентов для систем отопления с разной дельтой температур

    При пересчете действуем в следующем порядке. Находим в столбцах, подкрашенных синим цветом, строчку с дельтой 42°C. Ей соответствует коэффициент 0,51. Теперь рассчитываем, тепловую мощность 1 секции радиатора для нашего случая. Например, заявленная мощность 185 Вт, применив найденный коэффициент, получаем: 185 Вт * 0,51 = 94,35 Вт. Почти в два раза меньше. Вот эту мощность и нужно подставлять когда делаете расчет секций радиаторов. Только с учетом индивидуальных параметров в помещении будет тепло.

    Как рассчитать радиаторы отопления для частного дома

    Комфортные условия жизни в зимнее время всецело зависят от достаточности снабжения теплом жилых помещений. Если это новостройка, например, на дачном или приусадебном участке, то необходимо знать, как рассчитать радиаторы отопления для частного дома.

    Как рассчитать радиаторы отопления для частного дома

    Все операции сводятся к вычислению количества секций радиаторов и подчиняются четкому алгоритму, поэтому нет нужды быть квалифицированным специалистом – каждый человек сможет проделать довольно точное теплотехническое вычисление своего жилища.

    Почему необходим точный расчет

    Теплоотдача приборов теплоснабжения зависит от материала изготовления и площади отдельных секций. От правильных вычислений зависит не только тепло в доме, но также сбалансированность и экономичность системы в целом: недостаточное число установленных секций радиаторов не обеспечит должное тепло в комнате, а излишнее количество секций ударит по карману.

    Виды радиаторов отопления

    Для вычислений необходимо определиться с типом батарей и системы теплоснабжения. К примеру, расчет алюминиевых радиаторов теплоснабжения для частного дома отличается от других элементов системы. Радиаторы бывают чугунными, стальными, алюминиевыми, алюминиевыми анодированными и биметаллическими:

    • Наиболее известны чугунные батареи, так называемые «гармошки». Они долговечны, стойки к коррозии, обладают мощностью секций 160 Вт при высоте 50 см и температуре воды 70 градусов. Существенный недостаток этих приборов – неприглядный внешний вид, но современные производители выпускают гладкие и достаточно эстетичные чугунные батареи, сохраняя все преимущества материала и делая их конкурентоспособными.

    Чугунные батареи отопления

    • Алюминиевые радиаторы по тепловой мощности превосходят чугунные изделия, они прочны, обладают легким собственным весом, что дает преимущество при монтаже. Единственный недостаток подверженность к кислородной коррозии. Для его устранения взято на вооружение производство анодированных радиаторов из алюминия.

    Алюминиевые радиаторы отопления

    • Стальные приборы не обладают достаточной тепловой мощностью, не подлежат разборке и увеличению секций при необходимости, подвержены коррозии, поэтому не пользуются популярностью.

    • Биметаллические радиаторы отопления – это сочетание стальных и алюминиевых деталей. Теплоносителями и крепежными деталями в них являются стальные трубы и резьбовые соединения, покрытые алюминиевым кожухом. Недостаток – довольно высокая стоимость.

    По типу системы теплоснабжения различают однотрубное и двухтрубное подключение элементов отопления. В многоэтажных жилых домах в основном применена однотрубная схема системы теплоснабжения. Недостатком здесь является довольно значительная разница температуры входящей и исходящей воды на разных концах системы, что свидетельствует о неравномерности распределения тепловой энергии по приборам батареям.

    Однотрубная и двухтрубная система отопления

    Для равномерного распределения тепловой энергии в частных домах можно применять двухтрубную систему теплоснабжения, когда горячая вода подается по одной трубе, а охлажденная выводится по другой.

    Кроме этого, точное вычисление количества батарей отопления в частном доме зависит от схемы подключения приборов, высоты потолка, площади оконных проемов, количества наружных стен, типа помещения, закрытости приборов декоративными панелями и от других факторов.

    Помните! Необходимо правильно рассчитать требуемое число радиаторов отопления в частном доме, чтобы гарантировать достаточное количество тепла в помещении и обеспечить экономию финансовых средств.

    Таблица для расчета количества секций батареи

    Читать еще:  Кран маевского - 115 фото, видео установки и использования крана для радиатора

    Виды расчетов отопления для частного дома

    Вид расчета радиаторов отопления для частного дома зависит от поставленной цели, то есть насколько точно вы хотите рассчитать батареи отопления для частного дома. Различают упрощенный и точный методы, а также по площади и по объему рассчитываемого пространства.

    По упрощенному или предварительному методу подсчеты сводятся к умножению площади помещения на 100 Вт: стандартную величину достаточной тепловой энергии на метр в квадрате, при этом формула подсчета примет следующий вид:

    Q – потребная мощность тепла;

    S – расчетная площадь комнаты;

    Вычисление нужного числа секций разборных радиаторов ведется по формуле:

    N – требуемое количество секций;

    Qx – удельная мощность секции по паспорту изделия.

    Так как эти формулы для высоты комнаты – 2,7 м, для других величин требуется вводить коэффициенты поправки. Вычисления сводятся к определению количества тепла на 1 м3 объема помещения. Упрощенная формула выглядит так:

    H – высота комнаты от пола до потолка;

    Qy – средний показатель тепловой мощности в зависимости от вида ограждения, для кирпичных стен равен 34 Вт/м3, для панельных стен – 41 Вт/м3.

    Эти формулы не могут гарантировать комфортные условия. Поэтому требуются точные вычисления, учитывающие все сопутствующие особенности здания.

    Точный расчет приборов отопления

    Наиболее точная формула необходимой тепловой мощности выглядит следующим образом:

    Q = S*100*(K1*К2*…*Kn-1*Kn), где

    K1, K2 … Kn – коэффициенты, зависящие от различных условий.

    Какие условия влияют на микроклимат в помещении? Для точного расчета учитывается до 10 показателей.

    K1 – показатель, зависящий от числа наружных стен, чем больше поверхности соприкасается с внешней средой, тем больше потери тепловой энергии:

    • при одной наружной стене показатель равен единице;
    • если две наружные стены — 1,2;
    • если три внешние стены — 1,3;
    • если все четыре стены наружные (т.е. здание однокомнатное) — 1,4.

    К2 – учитывает ориентацию здания: считается, что комнаты хорошо прогреваются, если расположены в южном и западном направлении, здесь К2 = 1,0, и наоборот недостаточно – когда окна выходят на север или восток – К2 = 1,1. С этим можно поспорить: в восточном направлении помещение все же прогревается по утрам, поэтому целесообразнее применить коэффициент 1,05.

    Расчитываем, насколько сильно должна греть батарея

    К3 – показатель утепления наружных стен, зависит от материала и степени термоизоляции:

    • для наружных стен в два кирпича, а также при использовании утеплителя для не утепленных стен показатель равен единице;
    • для неутепленных стен – К3 = 1,27;
    • при утеплении жилища на основании теплотехнических расчетов по СНиП – К3 = 0,85.

    К4 – коэффициент, учитывающий самые низкие температуры холодного периода года для конкретного региона:

    • до 35 °С К4 = 1,5;
    • от 25 °С до 35 °С К4 = 1,3;
    • до 20 °С К4 = 1,1;
    • до 15 °С К4 = 0,9;
    • до 10 °С К4 = 0,7.

    Расчет радиаторов отопления по площади

    К5 – зависит от высоты помещения от пола до потолка. В качестве стандартной высоты принята h = 2,7 м с показателем равной единице. Если высота комнаты отличается от стандартной, вводится поправочный коэффициент:

    • 2,8-3,0 м – К5 = 1,05;
    • 3,1-3,5 м – К5 = 1,1;
    • 3,6-4,0 м – К5 = 1,15;
    • более 4 м – К5 = 1,2.

    К6 – показатель, учитывающий характер помещения, находящегося сверху. Полы жилых зданий всегда утепляются, комнаты сверху могут быть отапливаемыми или холодными, а это неизбежно повлияет на микроклимат рассчитываемого пространства:

    • для холодного чердака, а также если помещение сверху не отапливается, показатель будет равен единице;
    • при утепленном чердаке или кровле – К6 = 0,9;
    • если сверху расположено отапливаемая комната – К6 = 0,8.

    К7 – показатель, учитывающий тип оконных блоков. Конструкция окна существенным образом влияет на потери тепла. При этом величина коэффициента К7 определяется следующим образом:

    • так как окна из дерева с двойным остеклением недостаточно защищают комнату, показатель самый высокий К7 = 1,27;
    • стеклопакеты обладают отличными свойствами защиты от теплопотерь, при однокамерном стеклопакете из двух стекол К7 равен единице;
    • улучшенный однокамерный стеклопакет с аргоновым заполнением или двойной стеклопакет, состоящий из трех стекол К7 = 0,85.

    Однотрубная и двухтрубная система отопления

    К8 – коэффициент, зависящий от площади остекления оконных проемов. Теплопотери зависят от количества и площади установленных окон. Соотношение площади окон к площади комнаты должно быть урегулировано таким образом, чтобы коэффициент имел низшие значения. В зависимости от отношения площади окон к площади помещения определяется искомый показатель:

    • менее 0,1 – К8 = 0,8;
    • от 0,11 до 0,2 – К8 = 0,9;
    • от 0,21 до 0,3 – К8 = 1,0;
    • от 0,31 до 0,4 – К8 = 1,1;
    • от 0,41 до 0,5 – К8 = 1,2.

    Схемы подключения отопительных приборов

    К9 – учитывает схему подключения приборов. В зависимости от способа подключения горячей и вывода холодной воды зависит отдача тепла. Этот фактор необходимо учитывать при установке и определении требуемой площади приборов теплоснабжения. С учетом схемы подключения:

    • при диагональном расположении труб подача горячей воды осуществляется сверху, обратка – снизу с другой стороны батареи, а показатель равен единице;
    • при подключении подачи и обратки с одной стороны и сверху, и снизу одной секции К9 = 1,03;
    • примыкание труб с двух сторон подразумевает и подачу, и обратку снизу, при этом коэффициент К9 = 1,13;
    • вариант диагонального подключения, когда подача производится снизу, обратка сверху К9 = 1,25;
    • вариант одностороннего подключения с подачей снизу, обраткой сверху и одностороннее нижнее подключение К9 = 1,28.

    Потеря теплоотдачи из-за установки экрана радиатора

    К10 – коэффициент, зависящий от степени закрытости приборов декорирующими панелями. Открытость приборов для свободного обмена теплом с пространством помещения имеет немаловажное значение, так как создание искусственных барьеров снижает теплоотдачу батарей.

    Имеющиеся или искусственно созданные преграды могут изрядно понизить отдачу батареи из-за ухудшения обмена теплом с комнатой. В зависимости от этих условий коэффициент равен:

    • при открытом расположении радиатора на стене со всех сторон 0,9;
    • если прибор прикрыт сверху единице;
    • когда радиаторы прикрыты сверху ниши стены1,07;
    • если прибор прикрыт подоконником и декоративным элементом 1,12;
    • когда радиаторы полностью прикрыты декоративным кожухом 1,2.

    Правила установки радиаторов отопления.

    Кроме этого, существуют специальные нормы расположения приборов отопления, которые необходимо соблюдать. То есть батарею располагать не менее, чем на:

    • 10 см от низа подоконника;
    • 12 см от пола;
    • 2 см от поверхности наружной стены.

    Подставляя все необходимые показатели, можно получить достаточно точное значение требуемой тепловой мощности помещения. Путем разделения полученных результатов на паспортные данные отдачи тепла одной секции выбранного прибора и, округлив до целого числа, получаем количество требуемых секций. Теперь можно, не опасаясь последствий, подобрать и установить необходимое оборудование с нужной тепловой отдачей.

    Установка батареи отопления в доме

    Способы упрощения расчетов

    Несмотря на кажущуюся простоту формулы, на самом деле практический расчет не так прост, особенно если количество рассчитываемых комнат велико. Упростить расчеты поможет применение специальных калькуляторов, размещаемых на сайтах некоторых производителей. Достаточно ввести все необходимые данные в соответствующие поля, после чего можно получить точный результат. Можно воспользоваться и табличным методом, так как алгоритм вычисления достаточно прост и однообразен.

    Как рассчитать количество секций радиатора

    Расчет количества секций батареи основывается на определенных факторах, среди которых можно упомянуть, например, материал стен здания, климатическую зону и характеристики самой батареи. В нашей статье мы подробнее рассмотрим, как сделать вычисления правильно, чтобы исключить проблемы в будущем ввиду установки не тех батарей с точки зрения их малой эффективности и недостаточной экономичности.

    Оценка теплоотдачи с учетом габаритов помещения

    При установке батарей количество секций рассчитывается на основе существующей потребности в тепловой мощности. Такие вычисления производятся с учетом площади или объема подготавливаемого для обогрева помещения. Необходимо также брать во внимание дополнительные потери, такие как угловая комната.

    Площадь

    Нормы, действующие в РФ, устанавливают минимальные значения тепловой мощности применительно к конкретной климатической зоне. Например, в центральноевропейской части России такое значение составляет 100 Вт на 1 м².

    На практике расчет числа секций стальных радиаторов отопления происходит следующим образом: вычисляется площадь объекта посредством умножения его ширины на длину; полученное значение умножается на 100 Вт с последующим делением на параметр теплоотдачи одной секции.

    Рассмотрим вариант организации отопления в комнате 3 на 6 метров и попробуем определить, какая тепловая мощность радиатора из металла нам понадобится при условии, что параметр теплоотдачи одной секции составляет 200 Вт:

    В результате мы получаем 9 конструктивных элементов радиатора. Такой расчет, когда учитываются лишь параметры площади и теплоотдачи, отличается множеством недостатков, включая следующее:

    • не принимаются во внимание важные особенности помещения, например, число окон в нем и то, насколько оно утеплено;
    • нельзя получить точные результаты, если анализируемая комната имеет потолки, высота которых превышает 3 м;
    • приведенная формула дает возможность получить значения, которые подходят исключительно для средней полосы РФ.

    Объем

    Для повышения точности вычисления следует учитывать не площадь, а объем. Норма тепловой мощности в этом случае составляет 41 Вт на 1 м 3 .

    Выполняем расчет количества радиаторов отопления, беря во внимание помещение 3 на 6 метров с потолками высотой 2,7 м:

    • 3*6*2,7 = 48,6 м 3 – объем комнаты;
    • 48,6*41 = 1992,6 Вт – мощность радиатора;
    • 1992,6/200 = 9,96 – количество секций.

    Предложенный метод расчета позволяет сделать вывод о том, что для эффективного обогрева рассматриваемого помещения требуется 10 секций. Это несколько отличается от того значения, которое было получено с учетом площади комнаты, то есть точность в данном случае выше.

    Как компенсировать теплопотери

    Максимально точное вычисление мощности может быть произведено лишь с учетом некоторых поправок:

    • если в помещении 2 окна, значение количества секций следует поделить на 2, чтобы узнать, какой длины радиатор должен стоят под каждым окном;
    • если при расчете получилось дробное значение, округление необходимо производить с увеличением, так как лучше иметь запас, чем нехватку мощности;
    • если высота потолка превышает 3 м или не менее двух стен в помещении выходят на улицу, требуется увеличить мощность радиатора за счет дополнительных секций.

    Все системы отопления имеют свои нюансы, которые нужно учитывать при установке радиаторов. Используемые в частном секторе системы искусственного обогрева помещений являются автономными. По своей эффективности они превосходят централизованные системы, предназначенные для отопления многоэтажных домов.

    Как сэкономить

    1. На кухне можно установить радиатор меньшей мощности, то есть имеющий небольшое число секций, так как здесь находятся множество электроприборов, среди которых можно упомянуть плиту, обеспечивающую дополнительное тепло.
    2. Ванная комната также является местом, где доступен монтаж радиатора с меньшим количеством секций, что связано с наличием в этом помещении полотенцесушителя.
    3. Если стена, ведущая на балкон или лоджию, утеплена с помощью пенопласта, то можно смело отнимать еще 2-3 секции, хотя в данном случае необходимо учитывать толщину утепляющего материала. Один конструктивный элемент батареи можно убрать, если утеплены откосы дверей и окон.

    Вычисление требуемой мощности радиатора с учетом вышеприведенных советов дает возможность сделать помещение, используемое для проживания, комфортным, что обеспечивается нагревом воздуха до нужной температуры.

    Проведение работ по утеплению помогает избежать лишней траты денег, так как отпадет необходимость покупать дополнительное оборудование. Большей экономии можно добиться, если установить пластиковые окна с соблюдением правил монтажа и позаботиться о теплоизоляции стен.

    Одна секция: какой уровень теплоотдачи

    Современные радиаторы по внешнему виду преимущественно схожи между собой, но их технические характеристики вовсе не идентичны. Это зависит от того, какой материал был использован при изготовлении, каковы конструкционные особенности представленных моделей, насколько они отличаются по размеру и т. д.

    Читать еще:  Отопление в деревянном доме

    Нельзя с определенной точностью сказать, сколько кВт может обеспечить одна секция радиатора, так как каждую модель следует оценивать индивидуально, в частности, основываясь на информации, которую предоставляет компания-производитель. Мощность секции батарей разных моделей одного и того же производителя зачастую отличается на 15-25 Вт.

    Вместе с тем принято определять тепловую мощность с помощью усредненных значений, что позволяет рассчитывать нужное количество секций по конкретному типу радиатора. Такого вида расчеты являются приблизительными. Например, ниже приведены данные относительно мощности одной секции применительно к радиаторам из того или иного материала, расстояние между трубами подсоединения которых составляет 50 см:

    • алюминий – 190 Вт (0,19 кВт);
    • биметалл – 185 Вт (0,185 кВт);
    • чугун – 120 Вт (0,12 кВт).

    Уточнить информацию такого рода можно лишь после решения вопроса, как подобрать радиатор отопления требуемых размеров. Наибольшие расхождения в определении мощности наблюдаются в отношении батарей из чугуна, которые производятся со стенками разной толщины, что в свою очередь влияет на уровень теплоотдачи. Упомянутые выше цифры в большей мере применимы к батареям этого типа, представляющие собой так называемую гармошку.

    Строительными нормами определены следующие параметры обогрева с помощью одной секции, что также зависит от материала изготовления радиатора:

    • алюминий – от 1,9 до 2,0 м 2 ;
    • биметалл – 1,8 м 2 ;
    • чугун – от 1,4 до 1,5 м 2 .

    Приведенные выше цифры позволяют рассчитать количество конструктивных элементов батареи отопления путем деления значения площади помещения на соответствующий коэффициент. Если площадь, например, составляет 16 м 2 , то мы получаем следующие цифры в зависимости от типа радиатора:

    • алюминиевый – 8 секций (16/2 = 8);
    • биметаллический – 9 секций (16/1,8 = 8,88);
    • чугунный – 12 секций (16/1,4 = 11,4).

    Результаты расчетов опять же являются ориентировочными. Они помогут вам определиться с объемом затрат на покупку отопительного оборудования. Понять, сколько и каких радиаторов необходимо приобрести, можно будет лишь после выбора конкретной модели батареи и пересчета количества секций, учитывая температуру теплоносителя, который циркулирует в системе.

    Число секций: сколько требуется на самом деле

    В документации указывается мощность одного конструктивного элемента радиатора применительно к условиям, которые значатся как эталонные: теплоноситель на входе в батарею имеет температуру 90 °C, а на выходе – 70 °C, учитывая, что температура в помещении составляет 20 °C. Это позволяет рассчитать конкретный параметр температурного напора. Что же произойдет с мощностью теплоотдачи, если на входе в батарею температура теплоносителя будет 70 °C, на выходе – 60 °C, при этом температура воздуха в помещении составляет 23 °C?

    Ситуация, соотносимая с заявленными условиями, заставляет пересчитать температурный напор системы. Для этого требуется сложить значения температур теплоносителя на входе и выходе, разделить полученную сумму на 2, отняв затем значение температуры воздуха:

    (70 + 60)/2 – 23 = 42

    В результате так называемая дельта системы, то есть ее температурный напор, составляет 42 °C. Далее с помощью таблицы пересчета, расположенной ниже, находим строку с выведенной нами дельтой и определяем, что ей соответствует коэффициент 0,51. После этого остается только вычислить тепловую мощность одной секции применительно к заданным нами условиям. Если заявленная величина определяется значением 185 Вт, то с учетом индивидуальных характеристик помещения получаем параметр мощности для вычисления необходимого количества секций, которое составит 94,35 Вт (185*0,51 = 94,35).

    Мощность радиаторов: влияние способа подключения

    Тип подсоединения батарей также оказывает воздействие на уровень теплоотдачи. Оптимальным считается вариант, когда отопительный прибор подключается диагональным способом, обеспечивающим поступление воды сверху, что позволяет избежать снижения тепловой мощности.

    Наибольшие потери тепловой мощности, способные достигать 22%, происходят при боковом подключении. Остальные способы подсоединения приводят к относительным потерям упомянутой физической величины, что признается средними показателями, в чем можно убедиться посредством обращения к предлагаемому рисунку.

    Для однотрубных систем

    Указанная выше информация актуальна для систем отопления, характеризуемых как двухтрубные, которые обеспечивают подачу теплоносителя одной температуры на каждую из батарей. Что же касается однотрубных конструкций, то их функционирование основано на другом процессе.

    В таких системах каждый последующий радиатор получает все более холодную воду, поэтому расчет количества секций таких отопительных приборов предполагает, что температуру придется пересчитывать несколько раз, что является довольно проблематично. В связи с этим лучше всего произвести вычисление требуемой мощности радиаторов для двухтрубной системы с дальнейшим добавлением секций с учетом снижения тепловой мощности.

    Рассмотрим это на примере однотрубной системы, изображенной на схеме, которая имеет в своем составе 6 радиаторов. Такое количество батарей было установлено в зависимости от потребностей при двухтрубной разводке с последующей правкой полученных значений. Если расчет для первого радиатора строился обычным способом, то на втором приходилось учитывать то значение, на котором снизилась мощность, то есть 12 кВт (15–3=12), что составило 20%.

    Чтобы компенсировать понесенные потери, пришлось увеличивать количество секций. Прогнозировалось, что потребуется 8 конструктивных элементов батарей, но потеря в 20% внесла корректировку, предполагающую необходимость установки отопительных приборов с 9 или 10 секциями.

    При этом такой метод нельзя признать оптимальным, так как соответствие ему может привести к тому, что последняя в ветке батарея приобретет катастрофические размеры. В связи с этим устанавливаются однотрубные системы с запасом мощности, монтируется запорная арматура, а батареи подключаются через байпас для регулировки теплоотдачи.

    Вывод

    Отвечая вкратце на вопрос, как рассчитать количество радиаторов отопления, можно сказать следующее: быстро и относительно легко. Основные трудности начинаются, когда корректируются полученные данные в зависимости от индивидуальных особенностей того или иного помещения, что приводит к серьезным временным затратам.

    Расчет секций радиаторов отопления.

    Если необходим точный расчет секций радиаторов отопления, то сделать это можно по площади помещения. Данный расчет подходит для помещений с низким потолком не более 2,6 метра. Для того, чтобы его обогреть тратится 100 Вт тепловой мощности на 1 м 2 . Исходя из этого, не трудно посчитать, сколько понадобится тепла на всю комнату. То есть площадь нужно умножить на количество квадратных метров.

    Далее имеющийся результат следует разделить на значение теплоотдачи одной секции, полученное значение просто округляем в сторону увеличения. Если это теплое помещение, например кухня, то результат можно округлить в меньшую сторону.

    При вычислении количества радиаторов нужно учитывать возможные теплопотери, учитывая определенные ситуации и состояние жилья. Например, если комната квартиры угловая и имеет балкон или лоджию, то тепло она теряет намного быстрее, нежели комнаты квартир с другим расположением. Для таких помещений расчеты по тепловой мощности необходимо увеличить минимум на 20%. Если в планах монтировать радиаторы отопления в нише или скрыть их за экраном, то расчет тепла увеличивают на 15-20%.

    Для расчета радиаторов отопления, вы можете воспользоваться калькулятором расчета радиаторов отопления.

    Расчеты учитывая объем помещения.

    Расчет секций радиаторов отопления будет более точным, если их рассчитывать, основываясь на высоте потолка, то есть исходя из объема помещения. Принцип расчета в этом случае аналогичный предыдущему варианту.

    Вначале нужно вычислить общую потребность в тепле, а уже потом рассчитать количество секций в радиаторах. Когда радиатор скрывают за экраном, то потребность помещения в тепловой энергии увеличивают минимум на 15-20%. Если брать во внимание рекомендации СНИП, то для того, чтобы обогреть один кубический метр жилой комнаты в стандартном панельном доме необходимо потратить 41 Вт тепловой мощности.

    Для расчета берем площадь комнаты и умножаем на высоту потолка, получится общий объем, его нужно умножить на нормативное значение, то есть на 41. Если квартира с хорошими современными стеклопакетами, на стенах есть утепление из пенопласта, то тепла понадобится меньшее значение – 34 Вт на м 3 . Например, если комната с площадью 20 кв. метров имеет потолки с высотой 3 метра, то объем помещения будет составлять всего 60 м 3 , то есть 20Х3. При расчете тепловой мощности комнаты получаем 2460 Вт, то есть 60Х41.

    Таблица расчетов необходимого теплоснабжения.

    Приступаем к расчету: Чтобы рассчитать необходимое количество радиаторов отопления необходимо полученные данные разделить на теплоотдачу одной секции, которую указывает производитель. Например, если взять за пример: одна секция выдает 170 Вт, берем площадь комнаты, для которой нужно 2460 Вт и делим его на 170 Вт, получаем 14,47. Далее округляем и получаем 15 секций отопления на одну комнату. Однако следует учитывать тот факт, что многие производители намеренно указывают завышенные показатели по теплоотдаче для своих секций, основываясь на том, что температура в батареях будет максимальной. В реальной жизни такие требования не выполняются, а трубы иногда чуть теплые, вместо горячих. Поэтому нужно исходить из минимальных показателей теплоотдачи на одну секцию, которые указывают в паспорте товара. Благодаря этому полученные расчеты будут более точными.

    Как получить максимально точный расчет.

    Расчет секций радиаторов отопления с максимальной точностью получить довольно трудно, ведь не все квартиры считаются стандартными. И особенно это касается частных строений. Поэтому у многих хозяев возникает вопрос: как сделать расчет секций радиаторов отопления по индивидуальным условиям эксплуатации? В этом случае учитывается высота потолка, размеры и количество окон, утепление стен и другие параметры. По этому методу расчетов необходимо использовать целый перечень коэффициентов, которые будут учитывать особенности определенного помещения, именно они могут повлиять на способность отдавать или сохранять тепловую энергию.

    Вот как выглядит формула расчета секций радиаторов отопления: КТ = 100Вт/кв.м. * П * К1 * К2 * К3 * К4 * К5 * К6 * К7, показатель КТ — это количество тепла, которое нужно для индивидуального помещения.

    1. где П — общая площадь комнаты, указана в кв.м.;

    2. К1 — коэффициент, который учитывает остекление оконных проемов: если окно с обычным двойным остеклением, то показатель — 1,27;

    • Если окно с двойным стеклопакетом — 1,0;
    • Если окно с тройным стеклопакетом — 0,85.

    3. К2 — коэффициент теплоизоляции стен:

    • Очень низкая степень теплоизоляции — 1,27;
    • Отличная теплоизоляция (кладка стен на два кирпича или же утеплитель) — 1,0;
    • Высокая степень теплоизоляции — 0,85.

    4. К3 — соотношение площади окон и пола в комнате:

    • 50% — 1,2;
    • 40% — 1,1;
    • 30% — 1,0;
    • 20% — 0,9;
    • 10% — 0,8.

    5. К4 — коэффициент, который позволяет учитывать среднюю температуру воздуха в самое холодное время:

    • Для -35 градусов — 1,5;
    • Для -25 градусов — 1,3;
    • Для -20 градусов — 1,1;
    • Для -15 градусов — 0,9;
    • Для -10 градусов — 0,7.

    6. К5 — корректирует потребность в тепле, учитывая количество наружных стен:

    • 1 стена— 1,1;
    • 2 стены— 1,2;
    • 3 стены— 1,3;
    • 4 стены— 1,4.

    7. К6 — учитывает тип помещения, которое находится выше:

    • Очень холодный чердак — 1,0;
    • Чердак с отоплением — 0,9;
    • Отапливаемое помещение — 0,8

    8. К7 — коэффициент, который учитывает высоту потолков:

    • 2,5 м — 1,0;
    • 3,0 м — 1,05;
    • 3,5 м — 1,1;
    • 4,0 м — 1,15;
    • 4,5 м — 1,2.

    Представленный расчет секций радиаторов отопления учитывает все нюансы комнаты и расположения квартиры, поэтому достаточно точно определяет потребность помещения в тепловой энергии. Полученный результат нужно только разделить на значение теплоотдачи от одной секции, готовый результат округляет. Есть и такие производители, которые предлагают воспользоваться более простым способом расчета. На их сайтах представлен точный калькулятор расчетов, необходимый для вычислений. Для работы с этой программой, пользователь вводит нужные значения в поля и получает готовый результат. Кроме этого, он может использовать специальный софт.

    голоса
    Рейтинг статьи
    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector