Mosmetroproekt.ru

МосМетроПроект
121 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Принцип работы и сборка смесительного узла теплых полов

Принцип работы и сборка смесительного узла теплых полов

Теплые полы позволяют повысить энергоэффективность современного жилья, сделать его комфортнее, а также существенно экономят средства на отопление. Из всех разновидностей теплых полов водяной наиболее сложен в плане регулировки. Но он пользуется большей популярностью благодаря экономически выгодной эксплуатации, долговечности и надежности. Смесительный узел для теплого пола является важным элементом системы управления. Он поддерживает необходимую температуру внутри контуров и обеспечивает циркуляцию теплоносителя. Правильная работа коллектора влияет на функциональность и эффективность водяной системы отопления.

  1. Цель использования устройства
  2. Принцип работы
  3. Элементы системы
  4. Питающий дроссель
  5. Трехходовый дроссель
  6. Особенности настройки смесительного узла
  7. Самостоятельная сборка

Цель использования устройства

Смесительный узел нужен для поддержания оптимальной температуры и давления в системе теплого пола

Применение насосно-смесительного узла для конструкции теплого пола обязательно, так как вода в контурах должна иметь совершенно другую, более низкую температуру, нежели в обычных системах отопления. Такой температурный режим не приемлем для системы теплого пола по нескольким причинам:

  • Контуры с теплоносителем располагаются по всей площади помещения. К тому же они заключены в стяжку, которая также обладает высокой теплоемкостью. Отсюда следует, что для поддержания комфортной температуры в помещении уровень нагрева водяной системы должен быть ниже, чем в классических радиаторах.
  • Чтобы человек ощущал комфорт при хождении босиком по теплому полу, температура поверхности покрытия не должна превышать 30 градусов. В противном случае появятся дискомфортные ощущения.

Назначение насосно-смесительного узла также связано с поддержанием достаточного гидравлического давления в контурах с большой протяженностью или сложной криволинейной формой.

Принцип работы

Цель, которая ставится перед данным видом оборудования, заключается в снижении температуры воды в контуре до комфортного значения без влияния на основную систему отопления. Роль смесителя состоит в подмешивании холодной воды в горячий поток. Состоит смесительный узел из следующих элементов:

  • Циркуляционный насос, установленный на входе теплоносителя. Благодаря насосу в системе устанавливается и поддерживается оптимальное значение давления воды, идущей по контурам, а также скорость ее циркуляции.
  • Узел подмеса в виде регулирующего клапана, подпитывающего водяной контур горячим напором. Открытие клапана происходит после сигнала термодатчика. Горячая вода перестает поступать в контур после того как он приобретет заданную температуру и термодатчик подаст соответствующий сигнал.
  • Распределительная гребенка с расходомерами, позволяющая одновременно подключать несколько контуров.
  • Сепаратор, который в автоматически удаляет воздух из системы. Обычно устанавливается на готовые смесительные узлы от известных производителей.

Главная особенность смесительного узла для теплого пола заключается в его автономности. Он работает в автоматическом режиме без участия человека, самостоятельно контролируя и регулируя давление и температуру теплоносителя в контуре.

Элементы системы

Все схемы объединяет простота работы, возможность самостоятельного монтажа, а также расположение основных элементов. Подача и «обратка» располагаются с левой стороны, а коллектор с гребенками – с правой. Различия схем заключаются в добавлении некоторых деталей. Чаще коллектор располагают около смесительного узла, реже – в отдалении, что может быть связано с дефицитом свободного пространства или планировочными особенностями помещения.

Состав комплектующих зависит от материала используемых труб – из сшитого полипропилена, металлопластиковых, гофрированных из нержавеющей стали или медных.

В схеме используют следующие элементы:

  • Запорная арматура в виде шаровых кранов. Они не участвуют в регулировке основных показателей теплоносителя – его температуры и давления, но необходимы при проведении ремонтных работ, когда требуется отключить отдельные узлы системы.
  • Косой фильтр, предназначенный для механической очистки воды. Его применяют в системе, если нет уверенности в чистоте используемой воды. Такой фильтр не пропустит твердые частицы в устройство для настройки, обеспечив тем самым корректную работу системы и продлив срок службы клапанов.
  • Термометры, обеспечивающие зрительный контроль над температурой воды внутри контура. Некоторые модели оснащены зондом, который непосредственно соприкасается с теплоносителем. Термометры бывают жидкостными, механическими и цифровыми.
  • Термостатический клапан является основным элементом управления смесительного узла. Сверху на него надевается термостатическая головка. Когда температура теплоносителя меняется, головка механически воздействует на термоклапан. Если градус превышен, клапан закрывается, а при понижении температуры – открывается.
  • Байпас для отбора холодной воды – перемычка, которая при помощи сантехнических тройников формируется между трубой подачи и «обратки». Для осуществления точной настройки напора теплоносителя на байпасе устанавливают балансировочный вентиль, который обеспечит оптимальный режим работы системы и ее бесшумность.
  • Оптимальная скорость движения воды по трубам обеспечивается при помощи циркуляционного насоса.

Питающий дроссель

Система с двухходовым клапаном является наиболее простой в исполнении. Контроль над температурой воды, поступающей в трубы системы, осуществляется благодаря термостатической головке, установленной на клапане и жидкостному датчику. Открытие и закрытие клапана происходит благодаря головке, пропускающей горячую воду от котла в контур или отсекающей ее.

Таким образом, вода из «обратки» поступает неограниченно, а горячая только при необходимости под контролем клапана. Благодаря этому исключается перегрев теплого пола и продлевается срок его службы. Невысокая пропускная способность двухходового клапана обеспечивает плавную регулировку температуры воды, исключая резкие перепады.

Надежные и эффективные клапаны рекомендуют использовать большинство специалистов. Но по их же мнению, питающие клапаны не будут полезны при слишком большой площади помещений (свыше 200 м2).

Трехходовый дроссель

В отличие от двухходового клапана, трехходовый осуществляет смешивание воды разной температуры внутри себя. Этот элемент объединил в себе питающий перепускной клапан и байпас. Особенность заключается в возможности настройки количества горячего и холодного теплоносителя для смешивания, благодаря заслонке, расположенной между трубой с горячей водой и «обраткой».

Такие клапаны имеют недостатки. Есть вероятность подачи очень горячей воды по сигналу термодатчика, которая может из-за резкого перепада спровоцировать повышение давления в трубах и нарушение целостности контуров. Большая пропускная способность трехходового клапана может стать причиной резкого перепада температуры воды в контуре даже при минимальном смещении регулировки устройства.

Особенности настройки смесительного узла

Механизм настройки обеспечивает точную регулировку температуры, движущейся по трубам системы обогрева, воды. В первую очередь это необходимо для создания комфортной поверхности пола и условий, продлевающих срок службы системы. Из котла вода выходит с температурой 60-80 градусов, а приемлемой для поверхности пола является температура не выше 30 градусов. Смесительный узел вводит в разогретый теплоноситель холодную воду, доводя его до оптимальных показателей.

Настройка производится в ручном или автоматизированном режиме – сервопривод потребуется приобрести дополнительно, так как он не входит в базовый комплект. Каждый контур оснащается запорными кранами, с помощью которых каждый контур имеет свои параметры настройки. Таким образом можно установить разную температуру поверхности пола для отдельных комнат или для отдельных участков в одном помещении.

Самостоятельная сборка

Схема для сборки

Собрать коллектор можно самостоятельно. В комплекте, как правило, производитель прикладывает подробную монтажную схему. Выполнить потребуется следующие виды работ:

  1. Фиксация оборудования осуществляется в горизонтальном положении на стене или в нише. Основное требование заключается в обеспечении доступа для обслуживания элементов узла и их управления. Если коллектор устанавливается не в отдельном помещении, а в ванной или прихожей, его в эстетических целях необходимо замаскировать, установив внутри коллекторного шкафа.
  2. Нагретая вода от котла подается снизу, а сверху монтируют «обратку». Для установки запорных кранов выбирают участок перед рамкой, после них монтируют насос. С его помощью будет происходить смешивание «обратки» и горячей воды, а также поддерживаться оптимальное давление в трубах.
  3. Выполняют установку пропускного клапана и распределительной гребенки.
  4. После этого необходимо выполнить разводку труб. Те, что идут на пол, закрепляют сверху, а трубы от системы отопления крепят в нижней части.
  5. При подключении коллектора используют комплектующие в виде компрессионных фитингов, в состав которых входит опорная втулка, зажимное кольцо и промежуточная латунная гайка.
  6. Когда монтажные работы завершены, приступают к проверке герметичности соединений – опрессовке. Для этого с помощью специального насоса в системе повышают давление и оставляют на 24 часа. Коллекторный узел полностью готов к эксплуатации, если установленное изначально значение давления за сутки не поменялось.

При недостатке опыта при самостоятельной сборке коллектора могут быть допущены следующие ошибки:

  • Некорректная настройка байпаса из-за неверных расчетов допустимой нагрузки на контур. Такие расчеты необходимо выполнять до начала монтажных работ.
  • Отсутствие сепаратора приводит к образованию воздушных пробок в водяных конурах, из-за чего падает эффективность системы отопления.
  • Неправильный выбор точки подачи горячей воды. Теплоноситель должен поступать сверху, а не снизу.
  • Отсутствие обратного клапана, который понадобится для предотвращения протечки.

Если изначально коллектор собран неправильно, впоследствии устранить ошибки и переделать систему будет проблематично. Поэтому лучше доверить работу специалисту, который произведет правильную сборку и настройку оборудования.

Смесительный узел для теплого пола

В конструкцию теплых водяных полов входят различные детали и элементы, без которых система не сможет нормально работать. Как и в обычном отоплении, здесь также присутствует теплоноситель. Однако, если в обычные радиаторы и прочее высокотемпературное оборудование он может подаваться без ограничений температуры, то для теплых полов такой вариант не годится. В первую очередь это связано с ограничениями по нагреву, которые устанавливаются строительными нормами для большинства напольных покрытий. Поэтому, чтобы обеспечить комфортную и безопасную эксплуатацию, в схеме предусмотрен смесительный узел для теплого пола.

  1. Для чего нужны смесительные узлы
  2. Принцип действия
  3. Варианты схем размещения
  4. Конструкции и типы клапанных кранов
  5. Как выбрать насос
  6. Виды смесительных узлов
  7. Смеситель с двухходовым клапаном
  8. Смеситель с трехходовым клапаном

Для чего нужны смесительные узлы

Следует отметить, что данное оборудование может эффективно использоваться лишь в системах водяных теплых полов, наполненных таким же теплоносителем, что и с обычных радиаторах отопления. Общая схема состоит из нагревательного котла и одного или нескольких контуров водяных труб, уложенных в определенном порядке.

Изначально вода нагревается в котле до высокой температуры и без каких-либо ограничений используется в радиаторах отопления. Однако нагрев напольных покрытий ограничивается санитарными нормами и не должен быть выше 31 градуса. То есть, на полу устанавливается среднее температурное значение. Следовательно, в зависимости от типа и толщины напольного покрытия, теплоноситель, наполняющий трубы, удерживает температуру на уровне 35-55 градусов. Таким образом, вода не может поступать в систему напрямую из котла, поскольку требуется ее предварительное охлаждение до установленного порога.

В связи с этим и возникла необходимость в применении смесительного узла, устанавливаемого на входе контура водяных полов. Данное устройство обеспечивает равномерное смешивание горячего теплоносителя, поступающего из котла и охлажденного теплоносителя, проходящего в обратном направлении. В результате, средняя температура воды понижается, и жидкость в таком виде поступает в контур.

У многих пользователей нередко возникает вопрос, так ли уж необходим узел смешения для теплого пола и можно ли без него обойтись? Такое вполне возможно при условии использования низкотемпературного контура во всех помещениях. При этом котел должен нагревать теплоноситель до установленного значения исключительно для теплых полов. Если же в системе отопления присутствуют высокотемпературные элементы, то смесительный узел устанавливается в обязательном порядке.

Принцип действия

Типовой смесительный узел работает по стандартной схеме. Теплоноситель, нагретый до горячего состояния, подходит к коллектору водяных полов. На своем пути он встречает преграду в виде предохранительного клапана, оборудованного термостатом. Если температура воды превышает требуемое значение, происходит срабатывание клапана, открывающего подачу охлажденного теплоносителя из обратки и смешивающего обе жидкости. В результате, горячая и холодная вода соединяются и по достижении температурой требуемого значения клапан вновь срабатывает, перекрывая поступление горячей воды.

Смесительный узел в системе теплых полов не только регулирует температуру жидкости, но и обеспечивает ее циркуляцию внутри контура. Для этих целей в устройстве предусмотрены следующие элементы:

  • Предохранительный клапан. С его помощью происходит подпитка отопительного контура горячей водой в необходимом объеме. Одновременно выполняется контроль над температурой при входе.
  • Циркуляционный насос. После его включения вода в контуре начинает двигаться с установленной скоростью. В результате, вся площадь теплых полов нагревается равномерно.

Работу смесительного узла также обеспечивают дополнительные элементы: байпас, защищающий от перегрузок, воздухоотводы, и различные типы дренажных и отсекающих клапанов. Поэтому смесительный узел для теплого пола своими руками можно сделать по разному, в соответствии с его функциями и условиями эксплуатации.

Монтаж оборудования всегда выполняется перед отопительным контуром. Непосредственное место установки выбирается исходя из конкретных условий использования теплых полов. При наличии нескольких отапливаемых помещений, смесительный узел помещается в отдельный коллекторный шкаф или монтируется отдельно в каждой комнате.

Варианты схем размещения

Смесительные узлы, независимо от конструкции, могут монтироваться по различным схемам. Основное требование, предъявляемое к каждой из них, заключается в получении нужной температуры теплоносителя. Все известные схемы можно условно разделить на две группы: параллельные (рис. 1) и последовательные (рис. 2). Основным отличием каждой схемы является направление движения теплоносителя.

Конструкция параллельной схемы предусматривает подачу воды после смешивания до нужной температуры не только в контур теплых полов, но и к обычным радиаторам отопления. В этом случае не весь теплоноситель попадает в теплый пол, и для подачи части теплоносителя к радиаторам потребуется насос с более высокой производительностью.

Последовательная схема будет нормально функционировать и с менее производительным насосом. В этом случае весь теплоноситель после смешивания циркулирует исключительно в отопительном контуре водяного пола. Данная схема считается более простой и чаще всего используется потребителями.

Конструкции обеих схем создаются с помощью определенного набора деталей и запорно-регулирующей арматуры. Основную роль играют клапанные краны и циркуляционный насос, с помощью которых удается получить нужное количество теплоносителя с требуемой температурой.

Конструкции и типы клапанных кранов

В насосно-смесительный узел для теплого пола могут входить различные типы клапанных кранов. Среди них следует отметить трехходовые клапаны (рис. 1), с помощью которых водяные потоки смешиваются, разделяются и переключаются между собой. Основной функцией этих приборов в смесительных узлах является создание смеси с заданной температурой, где перемешивается горячий теплоноситель, поступающий из котла, и охлажденная жидкость из трубопровода обратной подачи.

Главная задача двухходового клапана (рис. 2) заключается в изменении количества воды, поступающей из одного места. То есть, в данном случае регулируется величина потока. Если сечение клапана уменьшается, то снижается и объем теплоносителя, проходящего через этот прибор. Чтобы насос продолжал нормально работать, вода для него в нужном количестве поступает из другого трубопровода.

Каждый из этих клапанов по своей сути является обычным запорным механизмом с возможностью различных регулировок. В самых простых случаях поток воды перекрывается вручную обычным вентилем. Однако для смесительного оборудования данный метод не годится, поскольку он не обеспечивает автономную работу прибора. Поэтому совместно с клапанами используются термоголовки, регулируюobt открытие клапанов в автоматическом режиме. Информация для открытия или закрытия поступает от термодатчика, установленного на подающем или обратном трубопроводе. В некоторых конструкциях работа клапанов осуществляется через сервоприводы.

Следует остановиться и на термостатических трехходовых клапанах (рис. 3). К ним подключаются два трубопровода с разными температурами воды. После смешивания через третий отвод выходит жидкость с температурой, установленной заранее. Образуется насосный узел с улучшенными свойствами. Для регулировки температуры используются датчики, встроенные в корпус устройства.

Выбирая необходимый клапан, независимо от его конструкции, следует учитывать величину его пропускной способности. Данный параметр, обозначаемый Kvs или Kv, соответствует максимальному потоку теплоносителя, пропускаемого через клапан, находящийся полностью открытым. При этом перепад давления составляет 1 Бар. Существует стандартный ряд этой величины, указываемой в технических характеристиках в виде 1,0; 1,6; 2,5; 4,0; 6,6; 10 и т.д.

Как выбрать насос

Без циркуляционного насоса не сможет функционировать ни один смесительный узел для теплого пола. Теплоноситель к теплому полу должен поступать в заранее определенном количестве. Выбор насоса также следует производить с учетом того, что в наиболее длинном трубопроводе пола неизбежно возникают потери давления. Их величина зависит от длины самой ветки, количества вентилей и кранов и прочих факторов, тормозящих движение воды.

В современных условиях все расчеты выполняются с помощью специальных программ, а при их отсутствии – применяются формулы, взятые в справочниках. Основной расчетной формулой является следующая: Q=3600 х P/c х (tп – tо), в которой Р является суммарной мощностью петель водяного пола, с – теплоемкость (значение для воды – 4,2 Дж/кг), tп и tо – величина расчетной температуры подачи и обратки. Разница между ними не должна быть выше 10 градусов.

Если в качестве примера взять температуру подачи и обратки соответственно 35 и 25 градусов, а мощность всех петель – 8 кВт, то общий расход теплоносителя составит по формуле: Q = 3600 х 8/4,2 х 10 = 685 л/ч или 0,685 м 3 /ч. Полученное значение расхода воды, а также предварительно рассчитанные потери давления в системе позволяют выбрать циркуляционный насос с необходимой производительностью.

Потери давления рассчитываются путем гидравлического расчета водяных полов на основании большого количества параметров. В первую очередь принимаются во внимание потери давления в трубопроводе. На их величину влияет протяженность самой длинной петли, скорость перемещения в ней теплоносителя, материал и диаметр труб. Следует учесть, что в каждой петле расход воды будет отличаться, в зависимости от технических характеристик данного участка. Общие потери давления во всей петле вычисляются исходя из потерь давления на 1 метре трубопровода. Удельная потеря для 1 метра конкретной трубы указывается в прилагаемой документации.

Потери давления возникают когда приходится преодолевать местные сопротивления фитингов на расчетном участке. В этом случае учитывается общее количество тройников, клапанов и других элементов. После подсчета общих потерь давления можно легко выбрать нужную модель насоса.

Виды смесительных узлов

До сих пор рассматривался лишь принцип работы представленных схем смесительных узлов. Однако каждая из них отличается конструктивными особенностями в связи с использованием различного оборудования и комплектации. Обладая этими знаниями, вполне по силам соорудить смесительный узел для теплых полов своими руками.

Таким образом, все схемы по своей конструкции разделяются на два основных типа: смесительные узлы на двухходовых и на трехходовых клапанах. В каждой из них применяются различные элементы, отличающиеся разной последовательностью и расположением.

Смеситель с двухходовым клапаном

Двухходовая конструкция известна также в качестве питающего клапана. Он оборудован термостатической головкой с жидкостным датчиком для постоянного контроля температуры воды, поступающей в контур теплых полов. С помощью этой головки осуществляется открытие и закрытие клапана, за счет чего и происходит добавление или отсечение подачи горячей жидкости, поступающей от отопительного котла.

Таким образом, наступает этап смешивания двух теплоносителей, осуществляемый по очень простой схеме. Вода из обратки на узел теплого пола поступает непрерывно, а горячая жидкость подается только при необходимости. Именно этот процесс и регулируется с помощью двухходового клапана. Данная схема исключает перегрев теплого пола и способствует продлению его срока службы. Незначительная пропускная способность такого клапана позволяет плавно регулировать температуру теплоносителя, избегая резких скачков.

В большинстве водяных полов используются именно двухходовые клапаны. Единственным ограничением является площадь помещения: если она составляет 200 м 2 и более, то применение этих приборов считается нецелесообразным.

Смеситель с трехходовым клапаном

Трехходовой кран одновременно является питающим перепускным клапаном и байпасным балансировочным краном в смесительном узле. Отличительной особенностью данного прибора является возможность смешивания внутри него горячего и холодного теплоносителей, поступающих, соответственно, с подачи и обратки. Нередко трехходовые устройства оборудуются сервоприводами, под управление которых функционируют термостатические устройства и погодозависимые контроллеры.

Внутреннее пространство клапана перекрывается заслонкой, расположенной между трубами подачи горячей и охлажденной воды в зоне 90 градусов. Она может быть выставлена в любое положение – по центру или с уклоном в какую-либо сторону в зависимости от того, какую температуру смешанной воды требуется получить. Трехходовые клапана считаются универсальными и просто незаменимы в крупных системах с большим количеством контуров.

Управление погодозависимой арматурой позволяет изменять мощность теплых полов при изменении погодных условий. Резкое снижение температуры наружного воздуха приводит к быстрому остыванию помещения, и водяной тёплый пол уже не справляется со своей задачей. Для повышения его эффективности с помощью трехходового клапана и арматуры увеличивается расход воды и ее температура.

Насосно-смесительные узлы для водяного теплого пола

Насосно-смесительные узлы

Требуемый расход теплоносителя в любой системе водяного отопления подсчитывается по следующей формуле:

G = Q /c⋅ ∆T, (1)

где Q — тепловая мощность системы, Вт; с — удельная теплоёмкость теплоносителя, Дж/кг °С; ∆Т — разность температур между прямым и обратным теплоносителем, °С.

В системах радиаторного отопления перепад температур ∆Т обычно составляет порядка 20 °С, а в системах напольного отопления ∆Т = 5–10 °С.

Это значит, что для переноса одного и того же количества теплоты тёплые полы требуют расхода теплоносителя в 2–4 раза больше.

Максимальная температура теплоносителя в системах тёплого пола, как правило, не превышает 55 °С, рабочее значение этого параметра обычно лежит в пределах 35–45 °С.

В радиаторном же отоплении теплоноситель обычно подаётся с температурой 80–90 °С.

В связи с этими двумя факторами неизменным атрибутом системы напольного отопления является узел смешения.

    Насосно-смесительный узел системы тёплого пола должен выполнять следующие основные функции:
  • поддерживать во вторичном контуре температуру теплоносителя ниже температуры первичного контура;
  • обеспечивать расчётный расход теплоносителя через вторичный контур;
  • обеспечивать гидравлическую увязку между первичным и вторичным контурами.
    К вспомогательным функциям насосно-смесительного узла можно отнести следующие:
  • индикация температуры (на входе и выходе);
  • отсекание циркуляционного насоса шаровыми кранами для его замены или обслуживания;
  • защита насоса от работы на «закрытую задвижку» с помощью перепускного клапана;
  • аварийное отключение насоса при превышении максимально допустимой температуры теплоносителя;
  • отведение воздуха из теплоносителя;
  • дренирование узла.

Принцип работы простейшего насосно-смесительного узла рис. 1.

Рис. 1. Тепломеханическая схема простейшего насосно-смесительного узла

Нагретый теплоноситель поступает на вход насосно-смесительного узла от котла или стояка радиаторной системы отопления с температурой T1. На входе в узел установлен настраиваемый термостатический клапан 2, на приводе которого выставляется требуемая температура теплоносителя, поступающего в тёплый пол Т11. Термочувствительный элемент 3 привода клапана располагается после насоса 1. При повышении температуры Т11 выше настроечного значения, клапан 2 закрывается, а при понижении – открывается, пропуская горячий теплоноситель на вход насоса. Пройдя по петлям тёплого пола, теплоноситель остывает до температуры Т21. Часть остывшего теплоносителя возвращается к котлу, а часть – через балансировочный клапан 4 поступает на вход насоса, смешиваясь с горячим теплоносителем.

Таким образом, в первичном (котловом) контуре температура теплоносителя снижается с Т1 до Т21 (∆Ткк = Т1Т21). Температуру Т21 задаёт пользователь. Перепад температур в петлях тёплого пола ∆Ттп = Т11Т21 также задаётся на стадии расчётов. Зная эти данные, и требуемую тепловую мощность тёплого пола, можно определить соотношение расходов в узле:

    Исходные данные:
  • температура на входе в насосно-смесительный узел Т1 = 90 °С;
  • температура после насоса Т11 = 35 °С;
  • перепад температур в петлях тёплого пола ∆Ттп = 5 °С;
  • тепловая мощность тёплого пола Q = 12 кВт.
    Решение:
  1. Температура на выходе из петель тёплого пола: Т21 = Т11 – ∆Ттп = 35 – 5 = 30 °С.
  2. Перепад температур в первичном (котловом) контуре: ∆Ткк = Т1Т21 = 90 – 30 = 60 °С.
  3. Расход во вторичном контуре G11 = Q/c⋅ ∆Tтп = 12000/4187⋅5 = 0,573 кг/с.
  4. Расход в первичном (котловом) контуре G1 = Q/c⋅ ∆Tтп = 12000/4187⋅60 = 0,048 кг/с.
  5. Расход через байпас G3 = G11G1 = 0,573 – 0,048 = 0,535 кг/с.

Таким образом, расход в контуре тёплого пола в данном примере должен быть в 12 раз выше, чем в котловом контуре.

Как правило, циркуляционный насос при проектировании выбирается с некоторым запасом, поэтому он может перекачивать через байпас большее количество теплоносителя, чем требуется по проекту. К тому же, и температура теплоносителя в первичном контуре может по факту оказаться меньше расчётной. Именно для корректировки этих расхождений с расчётными данными служит балансировочный клапан 4, которым можно ограничить расход через байпас.

Насосно-смесительные узлы VT.COMBI и VT.COMBI.S

В насосно-смесительных узлах VT.COMBI и VT.COMBI.S (рис. 2, 3) приготовление теплоносителя с пониженной температурой происходит при помощи двухходового термостатического клапана, управляемого либо термоголовкой с капиллярным термочувствительным элементом, установленном в линии подающего коллектора (модель VT.COMBI), либо аналоговым сервоприводом, который работает под управлением контроллера VT.К200.М (модель VT.COMBI.S). Контроллер с датчиками температуры теплоносителя и наружного воздуха не входит в комплект поставки насосно-смесительного узла и приобретается отдельно.

В линии подмеса узла установлен балансировочный клапан, который задаёт соотношение между количествами теплоносителя, поступающего из обратной линии вторичного контура и прямой линии первичного контура, а также уравнивает давление теплоносителя на выходе из контура тёплых полов с давлением после термостатического регулировочного клапана.

От настроечного значения Kvb этого клапана и установленного скоростного режима насоса зависит тепловая мощность смесительного узла.

Узел адаптирован для присоединения к нему коллекторных блоков с межосевым расстоянием 200 мм и горизонтальным смещением между осями коллекторов 32 мм. При этом коллекторные блоки могут присоединяться как на входе, так и на выходе насосно-смесительного узла. Это позволяет использовать этот узел в комбинированных системах отопления (рис. 4), где отопление тёплым полом совмещается с радиаторным отоплением.

Рис. 4. Узел VT.COMBI.S в комбинированной системе отопления

Насосно-смесительный узел VT.DUAL

Насосно-смесительный узел VT.DUAL (рис. 5 и 6) состоит из двух модулей (насосного и термостатического), между которыми монтируется коллекторный блок контура тёплого пола. Для смешения используется трехходовой термостатический клапан, управляемый термоголовкой с капиллярным термочувствительным элементом, установленным на обратный коллектор вторичного контура.

Рис. 5. Насосно-смесительный узел VT.DUAL

Предохранительный термостат подающего коллектора останавливает насос в случае превышения настроечного значения температуры, прекращая циркуляцию в петлях тёплого пола.

Рис. 6. Узел VT.DUAL с коллекторным блоком (подключение справа)

Конструкция узла предусматривает перепускной контур с балансировочным клапаном, сохраняющим неизменным расход теплоносителя в первичном контуре при перекрытии петель тёплого пола.

Элементы узла устанавливаются не вертикально, а под углом 9°, что вызвано горизонтальным смещением осей коллекторного блока. Это позволяет подключать узел к подводящим трубопроводам как справа, так и слева.

Насосно-смесительный узел VT.VALMIX

Насосно-смесительный узел VT.VALMIX (рис. 7) отличается от узла VT.COMBI меньшей монтажной длиной и отсутствием перепускного клапана. Узел рассчитан на установку циркуляционного насоса монтажной длиной 130 мм. Ручной воздухоотводчик узла расположен на регулировочной втулке балансировочного клапана вторичного контура.

Узел поставляется с термоголовкой VT.3011, имеющей диапазон настройки температур от 20 до 62 °С. Вместо термоголовки может быть установлен аналоговый термоэлектрический сервопривод VT.TE3061, работающий под управлением контроллера VT.K200.М. Узел поставляется без циркуляционного насоса.

Рис. 7. Насосно-смесительный узел VT.VALMIX

Насосно-смесительный узел VT.TECHNOMIX

Так же как узел VT.VALMIX, узел VT.TECHNOMIX (рис. 8) рассчитан на установку циркуляционного насоса длиной 130 мм, но имеет несколько большую монтажную длину.

Кроме того, входные и выходные патрубки узла находятся в одной плоскости, поэтому узел монтируется к коллекторному блоку под углом 9°, и может устанавливаться как справа от обслуживаемого коллекторного блока, так и слева от него.

Узел поставляется с термоголовкой VT.5011, имеющей диапазон настройки температур от 20 до 60 °С.

Вместо термоголовки может быть установлен аналоговый термоэлектрический сервопривод VT.TE3061, работающий под управлением контроллера VT.K200.М. Узел поставляется без циркуляционного насоса.

Сравнение насосно-смесительных узлов VALTEC

Таблица 1. Сравнительная таблица насосно-смесительных узлов VALTEC

Смесительный узел для «теплого пола»

Понятие «теплый пол» является относительно новым, но уже весьма популярным явлением. Сегодня все больше потребителей используют конструкцию при обустройстве домов. Из предлагаемой статьи вы узнаете, как правильно монтировать теплый пол со смесительным узлом.

Общее понятие смесительного узла

Чтобы поставленная задача выполнялась легко, исполнитель должен понимать назначение, принципы функционирования выполненной конструкции. Указанное правило касается и установки смесительного узла.

Почему эта конструкция важна

Рассмотрим, какую работу выполняет смесительный узел теплого пола.

В первую очередь, нужно уточнить, что температура жидкости, циркулирующей по контурам теплого пола в два раза ниже стандартных систем отопления с наличием радиаторов и конвекторов.

В привычной, высокотемпературной системе используется вода, подогретая до 70-80 градусов и выше. Для указанных эксплуатационных режимов делались раньше и создаются теперь тепловые магистрали, выпускаются нагревательные котлы.

Температура жидкости, допустимая в классической системе отопления, не подходит теплому полу. Это связано с такими факторами:

  • Основываясь на площади активного теплообмена (это почти весь пол) и внушительной теплоемкости стяжки с проложенными трубами теплого пола, можно предположить, что для обогрева комнаты температуры воды +35 градусов вполне достаточно.
  • Комфортное восприятие подогрева поверхности босыми ногами имеет характерные рамки – ступне оптимально стоять на полу, нагретом максимум до 30 градусов. Если пол горячее, ногам неприятно и некомфортно.
  • Стандартные финишные напольные покрытия не подходят для сильного нагрева снизу. Высокая температура провоцирует деформацию пола, возникновение щелей между частями, поломку замкового соединения, волны и горбы по поверхности покрытия и т.д.
  • Большая температура может сильно испортить бетонную стяжку, в которую вмонтированы трубы теплого пола.
  • Сильный подогрев негативно сказывается на трубах проложенных контуров. При монтаже эти элементы жестко фиксируются и не расширяются под воздействием термического воздействия. Если в трубах будет постоянно находиться горячая вода, в них начнет расти напряжение. В течение определенного времени подобное явление быстро испортит трубы и спровоцирует протечки.

Из-за роста популярности теплых полов производители начали предлагать котлы с похожим принципом действия. Но многие специалисты отмечают бессмысленность покупки специального водонагревателя. Во-первых, «чистый» теплый пол зачастую используется на определенных участках и комбинируется со стандартным полом. Во-вторых, вместо двух котлов, лучше четко определиться с размещением теплого и классического пола и на границе поставить смесительный узел.

Еще один фактор, объясняющий целесообразность применения смесительного узла. При монтаже теплого пола нужно обеспечить правильную циркуляцию жидкости в каждом контуре пола, а ведь они порой составляют более 8 метров в длину, изгибаются несколько раз, круто поворачивают.

Важно! Обеспечить правильный обогрев пола можно только отдельным насосным оборудованием.

Как работает смесительный узел

Подогретая жидкость при поступлении в коллектор теплого пола, сразу попадает в клапан, в котором хранится термостат. Если вода для труб очень горячая, открывается клапан и впускает холодную воду в подогретую жидкость, смешивая их до оптимального температурного показателя.

Коллектор системы оснащен двумя главными функциями. Помимо смешивания воды с целью получения необходимой температуры, он заставляет жидкость циркулировать. Для этого система оснащена специальным циркуляционным оборудованием. Когда вода постоянно двигается по трубам, это равномерно прогревает весь пол. Для лучшей функциональности коллектор оснащают:

  • отсекающими клапанами;
  • дренажными клапанами;
  • воздухоотводчиками.

Если теплый пол монтируют только в одном помещении, здесь же нужно ставить насос. Чтобы ящик не занимал много места, для него предварительно делают в стене нишу. Если теплый пол будет стелиться во всех комнатах, рациональнее создание общего коллекторного шкафа.

Примеры насосно-смесительных узлов: принцип работы

Существует много схем смесительных узлов, мы постарались подобрать самые понятные и простые для изготовления своими руками. Схемы основываются на одной ориентации – с левой стороны размещается подвод труб подачи и «обратки», с правой стороны – выход на коллектор теплого пола. Конкретно коллектор может присоединяться к насосно-смесительному узлу или находиться на определенном расстоянии. Это зависит от количества места, выделяемого под оборудование.

Пример 1

В насосно-смесительный узел нужно установить трехходовой смесительный термоклапан вместо обычного. Управление данным устройством ложится на термоголовку, оборудованную выносным датчиком (его положение остается прежним).

Подмешивание водяных потоков происходит в трехходовом клапане. Клапан работает по такому принципу: когда шток меняет свое положение, один проход начинает немного открываться, а другой – закрываться.

Трехходовой клапан может управляться не отдельной термоголовкой – многие модели оснащены встроенными датчиками температуры. Некоторые специалисты утверждают, что выносной датчик более корректен — с ним система функционирует намного лучше.

Данный пример подключения узла предполагает использование обратного клапана, установленного на байпасе. Его нужно ставить, если автоматика дополнительно «командует» циркуляционным насосом. Без обратного клапана при простой циркуляции байпас превратится в обычную неуправляемую перемычку, что негативно повлияет на сбалансированность отопительной системы и работу других составляющих. Если насос будет работать постоянно, клапан можно не ставить, поскольку он станет источником дополнительного гидравлического сопротивления.

Вышеописанный метод рационально использовать для крупных смесительных узлов, соединенных с несколькими контурами разного размера. Также его используют для отопительной системы, управляемой погодозависимым механизмом, поскольку параметры изменяются как из-за клапана, так и за счет функционирования циркуляционного насоса.

Пример 1

Пример 2

Этот метод предполагает последовательное расположение циркуляционного насоса. Здесь также рационально использование трехходового клапана, но немного другого. Механизм должен смешивать два потока в один и перенаправлять их к центральному патрубку.

У таких клапанов есть маркировка – стрелочная или цветовая, поэтому вероятность ошибки исключена.

Во всех других аспектах это пример аналогичен первому. Байпас можете вообще не использовать – узел заменен трехходовым клапаном, что хорошо экономит место и придает установке компактность.

Пример 2

Пример 3

Эта и последующая схемы кардинально отличаются от описанных выше примеров, поскольку здесь циркулярный насос располагается совершенно в другом месте.

Пример 3

На рисунке заметно, что новые элементы не использовались. Только у труб подачи и обратки со стороны коллектора изменилось расположение. Байпас используется, но местом встречи холодной и горячей воды является его верхняя точка. На поверхности байпаса установили циркуляционный насос, который прокачивает сверху вниз.

Узел подмеса работает по следующему принципу: термоклапан пропускает горячую воду, дозирует ее до требуемого объема, смешивает с остывшей водой в верхнем тройнике байпаса. Расположенный в этом месте насос хватает два водяных потока и качает их вниз.

В нижнем тройнике байпаса водяной поток опять делится на части. Основная часть воды, отрегулированная до нужной температуры, направляется в систему теплого пола. Остаток автоматически отходит к «обратке».

Важно! Основное преимущество данной конструкции – компактный размер. Недостатки: сниженная производительность системы, сложная балансировка.

Пример 4

Этот узел смешения отличается от предыдущего только наличием трехходового термосмесителя, которые смешивает встречные водяные потоки.

Пример 4

Определение основных параметров смесительного узла

Если вы решили делать сборку и настройку узла для теплого пола самостоятельно, нужно следить, чтобы приобретаемые детали имели размер, соответствующей системе. Имеется в виду не только диаметр и монтажные размеры, но и производительность главных компонентов узла: термоклапана и насоса. Под производительностью понимают способность элементов фильтровать необходимое количество теплоносителя в определенное время.

Насос должен обеспечивать правильную циркуляцию воды во всех контурах теплого пола, то есть постоянно преодолевать сопротивление жидкости.

Что такое производительность

Этот показатель важно учитывать при покупке насоса и клапана. Насос является активным узлом, перекачивающим требуемое количество воды. Задача клапана – пропускать такой объем жидкости. Сегодня на рынке сантехники представлены клапаны с разным уровнем пропуска, регулировка которого выполняется кольцом предустановки.

Минимально допустимый напор насоса смесительного узла

Общая отопительная система оснащена циркуляционным насосом, но он может не обеспечить требуемый напор для пола. Внимательно осмотрев схемы узла, видно, что клапан полностью закрыт, а давление, заставляющее воду циркулировать, обеспечивается насосом смесительного узла.

Важно! Выбирая циркуляционный насос, особое внимание следует уделить техническому паспорту – в нем должна быть описана производительность и создаваемый напор в разных рабочих режимах.

Самостоятельная установка смесительного узла

Нет точной схемы сборки узла. Ниже вы увидите сборку на примере первой схемы.

  1. Нет точной схемы сборки узла. Ниже вы увидите сборку на примере первой схемы.
    1. Разложите перед собой все комплектующие смесительного узла.
    2. Выкрутите из насоса винты. Не отрывая части насоса друг от друга, осторожно разверните верхнюю «половинку» касательно нижней на половину оборота. Совместите отверстия под винтики, вкрутите их.
    3. Описываемая схема состоит из трех термометров. Смесительная группа предполагает использование стрелочных термометров с зондами. Чтобы подтвердить правильность показаний, проверьте их другим термометром. Если наблюдаются отклонения, термометры нужно подкорректировать. На торцевой части зонда (под защитным колпачком) есть калибровочный винт. Вращением стрелка термометра выставляется на правильный показатель.
    4. Далее собирается смесительный узел. К запорному шаровому крану с «американкой», присоедините тройник, на котором будет стоять термометр.
    5. Соедините патрубок смесительного узла с другим выходом тройника.
    6. Установите байпас. Процедура предполагает накручивание патрубка с «американской» на нижний вход термостатитеского клапана.
    7. Прикрутите тройник к штуцеру снизу. Выходы тройника указывают потокам направление.
    8. Левый выход тройника соедините с запорным шаровым краном штуцером с «американкой». При необходимости можете поставить обратный клапан между краном и тройником.
    9. На противоположный участок от первого тройника поставьте дополнительный тройник для термометра. После успешного монтажа термометра можно начинать собирать верхнюю правую часть смесительного узла. Крайний участок должен состоять из запорного крана, прямой трубы, тройника для монтажа термометра и штуцера из комплекта циркуляционного насоса.
    10. Установите запорный кран и на нижнюю ветку, идущую от коллектора с «обраткой» к байпасу.
    11. Поставьте второй штуцер в правый патрубок клапана. Осталось смонтировать насос.
    12. Уложите штатную прокладку в накидную гайку, затем гайку вкрутите на входной патрубок насоса, но пока не обжимайте.
    13. Проведите аналогичное действие с выходом из насоса.
    14. Придайте насосу требуемое положение, закрепите гайки.
    15. Обтяните разъемные соединения.
    16. Установите собранный смесительный узел в подобранном месте, подключите к трубам отопительного контура и к коллекторам теплого пола.

Создание смесительного узла в домашних условиях – несложный, но требующий аккуратности процесс. Если вы не уверены в своих силах, лучше воспользуйтесь услугами специалиста.

Насосно-смесительный узел для теплого пола

Теплый пол в отличие от других автономных систем отопления требует более тщательного конструктивного подхода. В данном случае не достаточно иметь источник нагрева и обогревательные приборы. Для полноценной работы теплых водяных полов требует куда больше дополнительного оборудования, оснастки и приборов. Все дело в том, что греющие полы являются низкотемпературной системой отопления и требуют более тщательной подготовки теплоносителя. Существенная разница между температурой нагрева теплоносителя в нагревательном приборе и температурой воды, циркулирующей в трубопроводе греющих полов, заставляет использовать узел подмеса.

Насосно-смесительный узел для работы теплого пола или узел смешения, представляет собой комплекс взаимосвязанного между собой оборудования, приборов и механизмов. Каждая деталь узла выполняет возложенные на нее функции и задачи, действую в едином ключе. Разберемся, что собой представляет группа смешения, какова ее роль в работе отопительной системы.

Основное предназначение насосно-смесительного узла

Основная задача, которая возлагается на насосно-смесительный узел, заключается в технической возможности осуществлять смешивание и распределение потоков теплоносителя разной температуры для последующей подачи готовой воды в отопительный контур теплого пола. Для чего это нужно? Все дело в том, что нагревательный котел или система централизованного отопления выдают теплоноситель высокой температуры (75-95 0 С), тогда как для теплых полов оптимальными режим нагрева воды должен быть в диапазоне 35-55 0 С.

С понижением температуры воды и интенсивностью потока теплоносителя в системе как раз и справляется насосно-смесительный узел. Благодаря этому оборудованию, теплые полы можно подключить к уже существующей системе обогрева, имея тепловые и гидравлические расчеты. Смесительная группа для теплого пола оснащена всеми необходимыми приборами, устройствами и приспособлениями, обеспечивающими не только смешивание различных потоков, но и оптимальный расход теплоносителя по отопительным контурам.

Смешивать воду удается в результате подмеса к горячей воде, идущей по основной трубе, жидкости, поступающей в обратном направлении (обратки). Далее, для нормальной работы теплых водяных полов в систему подается под определенным давлением подготовленная, до необходимой температуры вода. Смесительный узел в данном случае играет роль охладительной системы. Этим и обусловлено название блока.

На заметку: теплый пол с длинными водяными контурами, рассчитанный на обогрев больших площадей, нуждается в принудительной циркуляции теплоносителя, поэтому в комплекте к основному, охлаждающему и распределительному оборудованию, идет циркуляционный насос.

Определившись с назначением насосно-смесительного узла, следует отметить его значение для автономной системы отопления. Благодаря установке этого оборудования, вы можете обеспечить:

  • максимально комфортную температуру обогрева в жилых помещениях;
  • безопасность эксплуатации отопительной системы с жидким и горячим теплоносителем;
  • повысить эксплуатационные возможности отопительных контуров и увеличить срок эксплуатации теплых полов.

На рисунке-схеме показаны основные функции всех элементов насосно-смесительного блока и место расположения каждого прибора.

Комплектация узла и принцип работы оборудования

В основе всей конструкции лежит простой и понятный комплекс оборудования, каждое из которых выполняет свою определенную роль в работе всего устройства. На первый взгляд конструкция довольно сложная, однако при детальном анализе, место и функциональность каждого прибора имеет свое объяснение. В большинстве случаев смесительные узлы комплектуются стандартно. В комплект входят следующие элементы:

  • насосное оборудование, обеспечивающее циркуляцию воды в системе. С помощью насоса создается необходимое рабочее давление в трубопроводе, обеспечивается необходимая скорость подачи теплоносителя в водяной контур. На рисунке показаны рекомендуемые положения насоса. Можно использовать в работе насосы с сухим или с мокрым ротором.

На заметку: без установки насоса теплый пол может функционировать только в двух вариантах: при использовании централизованного отопления или при монтаже теплого пола, работающего от системы ГВС.

  • узел подмеса — устройство, осуществляющую непосредственную регулировку температуры нагрева теплоносителя. Обычно это трехходовой кран с ручным управлением или трехходовой электромеханический клапан. Основная задача прибора, подпитка основного контура горячей водой. За счет взаимосвязи термостата с краном, осуществляется периодические включения, выключения клапана. Нагретая вода в результате работы поступает в теплый пол в том объеме, в котором необходимо для нормальной работы. При достижении в отапливаемом помещении необходимой температуры, клапан срабатывает в обратном направлении, перекрывая подачу горячей воды.
  • коллекторная группа — устройство обеспечивающее сбор и распределение теплоносителя непосредственно циркулирующего в петлях водяного контура. Коллектор состоит из двух частей, гребенка для сбора отработанной воды и гребенка для распределения подготовленного теплоносителя в систему теплых полов. С помощью коллектора можно подключить не один, а несколько водяных контуров. В гребенке имеется для этой цели несколько патрубков, в зависимости от количества водяных контуров. На подающую часть коллектора устанавливается расходомер, контролирующий расход теплоносителя в системе отопления.
  • последним звеном в цепи приборов и устройств, стоящих на оснащении насосно-смесительного узла является воздухоотводчик. Это самый простой вариант коллектора, который является сепаратором, обеспечивающим удаление воздуха из водяных контуров системы отопления.

Для справки: Говоря еще раз о насосной группе, можно отметить. Некоторые отопительные котлы имеют в своей конструкции встроенные насосы, поэтому ставить еще один насос на подающую трубу нет необходимости, если речь идет о радиаторном варианте обогрева. Для теплых полов требуются дополнительные усилия, направленные на обеспечения циркуляции воды в контурах.

Перечислив основные элементы блока, следует сказать пару слов о вспомогательных устройствах и приспособлениях, входящих в комплект насосно-смесительного узла. Речь идет о термостатах и клапанах, приводящих в действие насос.

На рисунке представлена принципиальная схема работы насосно-смесительных конструкций, стоящих на оснащении теплых водяных полов.

Если вы решили сделать коллектор своими руками, необходимо брать во внимание на следующий факт. Насос ставится в таком положении, сразу после трехходового клапана, не мешая его работе, а наоборот, вытягивал смешенную воду из него. Т.е. сначала устанавливается трехходовой клапан, потом насосный узел и уже следом за ними, коллектор. В любой другой конфигурации регулировка температуры нагрева теплоносителя и интенсивность циркуляции будет невозможна.


В дополнение ко всему, можно сказать, что насосно-смесительные блоки принято оснащать байпасом. Это обводная труба, через которую циркулирует теплоноситель в обход клапана и циркулирующего насоса.

Такая схема применяется в тех ситуациях, когда возникает необходимость направить обратку сразу через байпас в систему.

Как видно из описания оборудования, входящего в комплект смесительных станций, ничего сложного в конструкции нет. Поэтому при желании, вы можете сами собрать подобное устройство и обеспечить себе существенную экономию средств.

Трехходовой клапан для смесительного узла. Его место и значение

Основную работу в работе насосно-смесительного узла играет трехходовой кран или автоматизированный аналог устройства, трехходовой клапан. Обычно в продаже уже идут смесительные узлы, укомплектованные подобными устройствами. Если вы решили собрать комплекс самостоятельно, определитесь с функциональностью клапана и с тем, каким образом он должен работать.

По умолчанию модели клапанов имеют настройку на определенные температурные параметры. При желании вы уже самостоятельно можете осуществить настройку прибора под собственную отопительную систему. Для этого достаточно передвинуть термоголовку клапана в нужное положение.

Важно! Трехходовые клапаны имеют низкую пропускную способность, всего 2 м 3 в час. Поэтому оптимальным будет использование трехходовых клапанов для смешения теплоносителя при работе с непродолжительными водяными контурами. (Для отопления площадей не более 50м 2 ).

Для работы с водяными контурами большой протяженностью, используются трехходовые клапаны, рассчитанные на большие объемы воды (до 4 м 3 в час). Как правило, такие устройства имеют, и ручной вариант управления и оснащаются сервоприводами. Такие приборы используются с успехом для работы теплых полов в помещениях площадями более 100 м 2 .

Монтаж насосно-смесительного узла. Способы подключения

Собирая теплый пол в своем доме, самая тяжелая работа — это монтаж стяжки. Однако подключение водяных полов к системе отопления так же задача не простая и требующая определенных знаний. Как правило, насосный узел, смеситель и коллектор устанавливаются уже после того, как закончены работы по укладке отопительных водяных контуров. Подключаются смесительные станции в четкой последовательности. Каждый прибор и устройство должно иметь свое место, которое определяет функциональность устройств.

Монтаж оборудования осуществляется в коллекторный шкаф, в отапливаемом помещении или рядом с ним, в непосредственной близости. Все соединения должны выполняться в соответствии с технологией. Для соединения используется резьбовое соединение, холодная сварка или муфтовые соединения. При сборке смесителя и насосной группы своими руками, старайтесь добиваться коротких и удобных соединений, обеспечивающих удобный доступ к каждому элементу конструкции.

Для подключения и нормальной функциональности узла необходимо соблюдать правильное расположение труб и настройку каждого элемента системы:

  • балансировочный клапан (требуется расчет места его установки);
  • циркуляционный насос (требуется настройка скорости подачи);
  • балансировка каждой ветки отопительного контура;
  • перепускной, трехходовой клапана (требуется настройка в ручном или в автоматическом режиме);
  • провести диагностику готового блока уже в полной комплектации.

Все соединения должны отвечать требованиям тепловых и гидравлических расчетов. Здесь уместно напомнить, что перед тем, как приступать к сборке и монтажу насосно-смесительного узла, важно правильно подобрать оборудование. Мощность насоса, диаметр и пропускная способность трехходового клапана. Число водяных контуров играет роль в выборе гребенок для коллекторной группы. Воздухоотводчики и спускные клапаны так же должны быть установлены в определенных местах.

Насосно-смесительный узел для теплого пола: как работает, схемы, монтаж и настройка

Тёплые водяные полы сегодня набирают популярность, они являются признаком комфорта. Но, чтобы такое отопление эффективно функционировало, требуется насосно-смесительный узел. Он позволяет добиться оптимального температурного уровня теплоносителя, а также отрегулировать его поступление в петли.

Поэтому, мы решили рассказать о существующих моделях насосно-смесительных узлов, и об их комплектации. Вы узнаете, как собрать узел подмеса для тёплых полов своими руками, а также как произвести монтаж и настройку.

Функции

Использование термосмесительного узла при обустройстве тёплого пола, позволяет соорудить независимую водяную систему отопления с возможностью регулировки температуры теплоносителя.

Гидрополовое отопление является низкотемпературным оборудованием. В напольный трубопровод, вода должна подаваться с температурой не больше +55 градусов. Так как, чаще производится обвязка данной конструкции от батареи или котла, где степень нагрева жидкости намного выше, то требуется специальный модуль подмеса.

Именно в этом узле происходит подмешивание охлаждённого теплоносителя из обратки к горячей воде, поступающей от источника нагрева, до необходимого показателя.

Данное водосмесительное устройство также контролирует объём теплоносителя, идущего в каждую петлю.

Принцип работы

Суть функционирования любой модели насосно-смесительного устройства одинакова. Поток нагретого теплоносителя, перемещаясь от источника, проходит через термостат, где фиксируется его температура. Затем вода поступает в предохранитель, там производится регулирование её температурного уровня, путём открытия и закрытия головки.

Если степень нагрева теплоносителя превышает заданный показатель, то предохранитель открывает заслонку и осуществляется подмес охлаждённой воды из обратки. При достижении нужного градуса, происходит перекрывание подачи.

За циркуляцию жидкости в гидроузле отвечает насос, именно от его работы зависит равномерность прогрева поверхности пола.

Области применения

Потребность в насосно-смесительном узле возникает, если теплоносителем выступает вода. Узнаем в каких случаях это происходит.

  1. Если водяной тёплый пол подключается от центрального отопления — так как нагрев воды в централизованной системе превышает требуемый уровень для напольного обогрева.
  2. При подключении от котла, который не работает с обраткой +55 и ниже — это все твёрдотопливные котлы и функционирующие на газе.
  3. Если магистраль — два и больше контуров с различной температурой (тёплые полы с радиаторами).

Все насосно-смесительные узлы делятся по типу рабочего органа:

  • С трёхходовым клапаном — устанавливаются в помещениях имеющих большую площадь, так как устройство способно пропускать большой объём воды. Подключается такой тройник для смешивания чаще к внешнему термодатчику, что даёт возможность производить установку уровня нагрева отталкиваясь от уличной температуры. Регулировочный процесс производится при помощи заслонки, которая расположена в месте стыка подающей и обратной трубы. В основном используется схема проектирования — последовательная.
  • С двухходовым — рекомендован для помещений до 200 м2, подключается как по параллельной, так и по последовательной схеме смешения. Вентиль имеет термоголовку с датчиком, им контролируется температурный уровень, при превышении показателя перекрывается подача горячей воды. Объём жидкости, которую способна пропускать данная конструкция, небольшой, поэтому процесс регулировки плавный.
  • Комбинированные — объединяют в себе клапан и балансировочный узел. Но этот вариант редко используется с нагревательными полами.

Схемы насосно-смесительных узлов

Насосно-смесительные узлы собираются несколькими способами, отличие кроется в подсоединение насоса и в виде клапана.

С последовательным подключением насоса

При включённом насосе по последовательной схеме осуществляется лишь подготовка теплоносителя и обеспечение его перемещения по петлям. Несмотря на потребность в двух отдельных аппаратах для перекачки жидкости по первичному и вторичному контурам, данная схема более совершенна технологически.

Она имеет повышенную производительность, чем при параллельном подключении. Поэтому, профессионалы чаще используют именно этот вариант при установке тёплых полов.

Однако, для эффективности работы пола при такой сборке, важную роль играет правильность расчёта и настройки, а также точность составленного чертежа.

С параллельным

Плюс параллельной схемы — требуется всего один аппарат для перекачки воды по обоим контурам. Это значительно упрощает сборочный процесс, но необходим более мощный агрегат.

Если смешивающее устройство планируется для небольшой отопительной системы, то рекомендуется параллельная компоновка. Так как при сборке такой конструкции собственноручно, происходит меньше проблем, тем самым проще избежать возникновения серьёзных ошибок. Но для больших площадей тёплого пола данная схема не подходит — низкая производительность и эффективность.

Какой лучше выбрать смеситель

Подбирать термосмеситель необходимо с учётом характеристик отопительного устройства. При выборе распределительного оборудования нужно учитывать способ подмеса — центральный или боковой.

Если площадь большая, с несколькими отдельными контурами, то обязательно обустройство смесительного узла с трёхходовым клапаном. Этот агрегат прекрасно справится с большим объёмом жидкости. При одноконтурном полу подойдёт коллектор с двухходовым смесителем.

Насосно-смесительный узел для тёплых полов можно сделать своими руками, но если приобретать готовый, то советуем эти модели:

  1. VT.COMBI и VT.COMBI.S — для приготовления низкотемпературного теплоносителя, используется двухходовой клапан, он управляется термоголовкой или сервоприводом. Термодатчик не входит в комплектацию — покупается отдельно.
  2. VT.COMBI — узел оснащён балансировочным вентилем, с помощью которого производится регулировка давления в системе.
  3. VT.COMBI.S — у этой модели НСУ коллектор можно подключать как на входе, так и на выходе. Поэтому, он используется при двух видах отопления (радиаторном и ТП).
  4. VT.DUAL — в механизм входит два модуля (насосный и термостатический), между ними размещается коллекторная группа. Смешивание производится трёхходовым клапаном с термоголовкой.

Это проверенные модели, и лучше покупать их.

Комплектация

Смесительный узел — сложный механизм, отвечает за поддержание стабильной температуры воды, и за её беспрерывную циркуляцию. Он входит в коллекторный блок, и состоит из ряда механизмов.

Насос

Основная функция насоса — создавать постоянное перемещение воды по трубопроводу. Он осуществляет подачу и возврат её через коллектор и ветки пола. Главные его показатели — давление и производительность.

При правильном их расчёте, насос обеспечит преодоление гидравлического сопротивления в магистрали пола. Рекомендовано применять приспособление с автоматическим переключателем рабочих режимов.

Регулятор расхода

  1. Балансировочный кран первичного контура (поплавковый)— он отвечает за количество теплоносителя, который поступает в магистраль из первичного высокотемпературного источника. Поток регулируется за счёт его пропускной возможности. Настройка производится вентилем с головкой, он вращается ключом. Регулировка также проводится клапаном термостата, за управление которым отвечает выносной датчик.
  2. Балансирный вентиль вторичного контура — он настраивается в зависимости от размера обогреваемой площади. Путём открывания и закрывания регулирующего крана меняются пропорции нагретого и охлаждённого потока. Закрытие балансировочного вентиля обратки вторичного контура приводит к увеличению подачи горячего теплоносителя от котла, а это — к увеличению теплопроводности.

Степень открытия регулируется с помощью шкалы, она нанесена на колбе. По ней определяется пропускная способность прибора в м3 за час.

Байпасный клапан

Байпас вмести с перепускным клапаном, способствует обеспечению бесперебойного функционирования насосного оборудования, при действии режима подпора — при полном или частичном прекращении циркуляции жидкости по трубопроводу пола. Это может произойти, если закрыты вентиля петель на гребёнке в ручную, или при помощи кранов.

В итоге, повышается сопротивление течению воды, а также нагрузка на механизм. Уровень давления в системе увеличивается, происходит открывание перепускного клапана.

Через байпасные патрубки и насос осуществляется перетекание теплоносителя, тем самым замыкается малый циркуляционный цикл. Это приводит к исключению аварийных ситуаций.

Вспомогательные элементы

За функции контроля и поддержания эффективной работы насосно-смесительной конструкции отвечают также элементы вспомогательного типа. Это:

  • термометр — контролирует температуру теплоносителя;
  • воздухоотводчик — через него удаляется воздух из системы;
  • дренажные краны, их предназначение — спуск воды;
  • обратный шаровой вентиль — предотвращает движение теплоносителя в обратную сторону.

Коллекторный блок

Коллекторная группа — к ней подключаются контуры тёплого пола, рассчитывается на определённое число ветвей. В неё входит подающая и обратная гребёнки.

голоса
Рейтинг статьи
Читать еще:  Лучший газовый обогреватель для дачи с баллоном: разновидности, отзывы
Ссылка на основную публикацию
Adblock
detector